Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala for Machine Learning, Second Edition

You're reading from   Scala for Machine Learning, Second Edition Build systems for data processing, machine learning, and deep learning

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781787122383
Length 740 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Data Pipelines 3. Data Preprocessing 4. Unsupervised Learning 5. Dimension Reduction 6. Naïve Bayes Classifiers 7. Sequential Data Models 8. Monte Carlo Inference 9. Regression and Regularization 10. Multilayer Perceptron 11. Deep Learning 12. Kernel Models and SVM 13. Evolutionary Computing 14. Multiarmed Bandits 15. Reinforcement Learning 16. Parallelism in Scala and Akka 17. Apache Spark MLlib A. Basic Concepts B. References Index

Chapter 12. Kernel Models and SVM

In the Binomial classification section of Chapter 9, Regression and Regularization, you learned the concept of hyperplanes that segregate observations into two classes. These hyperplanes are also known as linear decision boundaries. In the case of the logistic regression, the datasets must be linearly separated. This constraint is particularly an issue for problems with many features that are nonlinearly dependent (high dimension models).

Support vector machines (SVMs) overcome this limitation by estimating the optimal separating hyperplane using kernel functions.

This chapter introduces kernel functions; binary support vectors classifiers, one-class SVMs for anomaly detection, and support vector regression.

In this chapter, you will answer the following questions:

  • What is the purpose of kernel functions?
  • What is the concept behind the maximization of margin?
  • What is the impact of some of the SVM configuration parameters and the kernel method on the...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime