Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Scala Data Analysis Cookbook (new)

You're reading from   Scala Data Analysis Cookbook (new) Navigate the world of data analysis, visualization, and machine learning with over 100 hands-on Scala recipes

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781784396749
Length 254 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Arun Manivannan Arun Manivannan
Author Profile Icon Arun Manivannan
Arun Manivannan
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Getting Started with Breeze FREE CHAPTER 2. Getting Started with Apache Spark DataFrames 3. Loading and Preparing Data – DataFrame 4. Data Visualization 5. Learning from Data 6. Scaling Up 7. Going Further Index

Gradient descent

With supervised learning, in order for the algorithm to learn the relationship between the input and the output features, we provide a set of manually curated values for the target variable (y) against a set of input variables (x). We call it the training set. The learning algorithm then has to go over our training set, perform some optimization, and come up with a model that has the least cost—deviation from the true values. So technically, we have two algorithms for every learning problem: an algorithm that comes up with the function and (an initial set of) weights for each of the x features, and a supporting algorithm (also called cost minimization or optimization algorithm) that looks at our function parameters (feature weights) and tries to minimize the cost as much as possible.

There are a variety of cost minimization algorithms, but one of the most popular is gradient descent. Imagine gradient descent as climbing down a mountain. The height of the mountain...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime