Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
SAS for Finance

You're reading from   SAS for Finance Forecasting and data analysis techniques with real-world examples to build powerful financial models

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788624565
Length 306 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Harish Gulati Harish Gulati
Author Profile Icon Harish Gulati
Harish Gulati
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Time Series Modeling in the Financial Industry FREE CHAPTER 2. Forecasting Stock Prices and Portfolio Decisions using Time Series 3. Credit Risk Management 4. Budget and Demand Forecasting 5. Inflation Forecasting for Financial Planning 6. Managing Customer Loyalty Using Time Series Data 7. Transforming Time Series – Market Basket and Clustering 8. Other Books You May Enjoy

Recap of key terms

Some of the terms that we used in this chapter are:

  • ARIMA: The ARIMA model was analyzed by looking at various aspects of the model. We gained an understanding of the auto-regressive and moving average component of ARIMA. We also looked at the p, d, and q elements of the model. We developed an understanding of how the process helps to deal with autocorrelation, in comparison to regression. We forecasted values from the model using the historical data from the variable of interest only.
  • Dependent: The variable that we are trying to forecast or gain a better understanding of is the dependent. We can use a series of independent variables to try and forecast a dependent variable.
  • Differencing: This is the transformation of the data that we have used to derive a new variable, based on the change of the series from one data point to another.
  • Independent: The variables...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image