Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Deep Learning Projects

You're reading from   R Deep Learning Projects Master the techniques to design and develop neural network models in R

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788478403
Length 258 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Pablo Maldonado Pablo Maldonado
Author Profile Icon Pablo Maldonado
Pablo Maldonado
Arrow right icon
View More author details
Toc

Text Generation Using Recurrent Neural Networks

In this chapter, we will describe some of the most exciting techniques in modern (at the time of writing—late 2017) machine learning, recurrent neural networks. They are, however, not new; they have been around since the 1980s, but they have become popular due to the numerous records in language-related tasks in recent years.

Why do we need a different type of architecture for text? Consider the following example:

"I live in Prague since 2015"

and 

"Since 2015 I live in Prague"

If we would like to teach a traditional feed-forward network such as a perceptron or a multi-layer perceptron to identify the date I moved to Prague, then this network would have to learn separate parameters for each input feature, which in particular implies that it would have to learn grammar to answer this simple question...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime