Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning, Second Edition

You're reading from   Python Machine Learning, Second Edition Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781787125933
Length 622 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Vahid Mirjalili Vahid Mirjalili
Author Profile Icon Vahid Mirjalili
Vahid Mirjalili
Sebastian Raschka Sebastian Raschka
Author Profile Icon Sebastian Raschka
Sebastian Raschka
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Giving Computers the Ability to Learn from Data FREE CHAPTER 2. Training Simple Machine Learning Algorithms for Classification 3. A Tour of Machine Learning Classifiers Using scikit-learn 4. Building Good Training Sets – Data Preprocessing 5. Compressing Data via Dimensionality Reduction 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning 7. Combining Different Models for Ensemble Learning 8. Applying Machine Learning to Sentiment Analysis 9. Embedding a Machine Learning Model into a Web Application 10. Predicting Continuous Target Variables with Regression Analysis 11. Working with Unlabeled Data – Clustering Analysis 12. Implementing a Multilayer Artificial Neural Network from Scratch 13. Parallelizing Neural Network Training with TensorFlow 14. Going Deeper – The Mechanics of TensorFlow 15. Classifying Images with Deep Convolutional Neural Networks 16. Modeling Sequential Data Using Recurrent Neural Networks Index

Bringing features onto the same scale


Feature scaling is a crucial step in our preprocessing pipeline that can easily be forgotten. Decision trees and random forests are two of the very few machine learning algorithms where we don't need to worry about feature scaling. Those algorithms are scale invariant. However, the majority of machine learning and optimization algorithms behave much better if features are on the same scale, as we have seen in Chapter 2, Training Simple Machine Learning Algorithms for Classification, when we implemented the gradient descent optimization algorithm.

The importance of feature scaling can be illustrated by a simple example. Let's assume that we have two features where one feature is measured on a scale from 1 to 10 and the second feature is measured on a scale from 1 to 100,000, respectively. When we think of the squared error function in Adaline in Chapter 2, Training Simple Machine Learning Algorithms for Classification, it is intuitive to say that the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime