Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Data Mining Quick Start Guide

You're reading from   Python Data Mining Quick Start Guide A beginner's guide to extracting valuable insights from your data

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781789800265
Length 188 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Nathan Greeneltch Nathan Greeneltch
Author Profile Icon Nathan Greeneltch
Nathan Greeneltch
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Data Mining and Getting Started with Python Tools FREE CHAPTER 2. Basic Terminology and Our End-to-End Example 3. Collecting, Exploring, and Visualizing Data 4. Cleaning and Readying Data for Analysis 5. Grouping and Clustering Data 6. Prediction with Regression and Classification 7. Advanced Topics - Building a Data Processing Pipeline and Deploying It 8. Other Books You May Enjoy

Access, search, and sanity checks with pandas

Pandas includes some built-in access functions and search/filter functions to make life easier for users. Pandas also has some sanity checks that are available for you to quickly view your data and ensure that you have the correct batch loaded. For example, we've used the head() method, which displays the first five rows with column names, as a way to check which data we loaded in the beginning of this chapter. Don't by shy about sanity checks; if your company has a lot of money riding on the outcome of your analysis, then the last thing you want to do is to mistakenly work with the wrong data loaded.

For ad hoc work in the IPython console, you don't have to include print statements in order to send your output to a console. For example, you can simply pass df.head() into the IPython console and return the first five...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image