Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Neural Network Projects with Python

You're reading from   Neural Network Projects with Python The ultimate guide to using Python to explore the true power of neural networks through six projects

Arrow left icon
Product type Paperback
Published in Feb 2019
Publisher Packt
ISBN-13 9781789138900
Length 308 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
James Loy James Loy
Author Profile Icon James Loy
James Loy
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Machine Learning and Neural Networks 101 FREE CHAPTER 2. Predicting Diabetes with Multilayer Perceptrons 3. Predicting Taxi Fares with Deep Feedforward Networks 4. Cats Versus Dogs - Image Classification Using CNNs 5. Removing Noise from Images Using Autoencoders 6. Sentiment Analysis of Movie Reviews Using LSTM 7. Implementing a Facial Recognition System with Neural Networks 8. What's Next? 9. Other Books You May Enjoy

Questions

  1. How do we plot a histogram of each variable in a pandas DataFrame, and why are histograms useful?

We can plot a histogram by calling the df.hist() function built into a pandas DataFrame class. A histogram provides an accurate representation of the distribution of our numerical data.

  1. How do we check for missing values (NaN values) in a pandas DataFrame?

We can call the df.isnull().any() function to easily check whether there are any null values in each column of the dataset.

  1. Besides NaN values, what other kinds of missing values could appear in a dataset?

Missing values can also appear in the form of 0 values. Missing values are often recorded as 0 in a dataset due to certain issues during data collection—perhaps the equipment was faulty, or there are other issues hindering data collection.

  1. Why is it crucial to remove missing values in a dataset before...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image