Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering PyTorch

You're reading from   Mastering PyTorch Build powerful neural network architectures using advanced PyTorch 1.x features

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781789614381
Length 450 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ashish Ranjan Jha Ashish Ranjan Jha
Author Profile Icon Ashish Ranjan Jha
Ashish Ranjan Jha
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: PyTorch Overview
2. Chapter 1: Overview of Deep Learning using PyTorch FREE CHAPTER 3. Chapter 2: Combining CNNs and LSTMs 4. Section 2: Working with Advanced Neural Network Architectures
5. Chapter 3: Deep CNN Architectures 6. Chapter 4: Deep Recurrent Model Architectures 7. Chapter 5: Hybrid Advanced Models 8. Section 3: Generative Models and Deep Reinforcement Learning
9. Chapter 6: Music and Text Generation with PyTorch 10. Chapter 7: Neural Style Transfer 11. Chapter 8: Deep Convolutional GANs 12. Chapter 9: Deep Reinforcement Learning 13. Section 4: PyTorch in Production Systems
14. Chapter 10: Operationalizing PyTorch Models into Production 15. Chapter 11: Distributed Training 16. Chapter 12: PyTorch and AutoML 17. Chapter 13: PyTorch and Explainable AI 18. Chapter 14: Rapid Prototyping with PyTorch 19. Other Books You May Enjoy

Summary

GANs have been an active area of research and development in recent years, ever since their inception in 2014. This chapter was an exploration of the concepts behind GANs, including the components of GANs, namely, the generator and the discriminator. We discussed the architectures of each of these components and the overall schematic of a GAN model.

Next, we did a deep dive into a particular type of GAN – the DCGAN. With the help of an exercise, we built a DCGAN model from scratch using PyTorch. We used the MNIST dataset to train the model. The generator of the trained DCGAN model successfully generated realistic-looking fake images of handwritten digits after 10 epochs of training.

In the last section of this chapter, we explored another type of GAN, which is used for the task of image-to-image translation – the pix2pix model. Instead of working on just a pair of images, the pix2pix GAN model is architectured to generalize any image-to-image translation...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime