Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Pandas for Finance

You're reading from   Mastering Pandas for Finance Master pandas, an open source Python Data Analysis Library, for financial data analysis

Arrow left icon
Product type Paperback
Published in May 2015
Publisher Packt
ISBN-13 9781783985104
Length 298 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Michael Heydt Michael Heydt
Author Profile Icon Michael Heydt
Michael Heydt
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started with pandas Using Wakari.io FREE CHAPTER 2. Introducing the Series and DataFrame 3. Reshaping, Reorganizing, and Aggregating 4. Time-series 5. Time-series Stock Data 6. Trading Using Google Trends 7. Algorithmic Trading 8. Working with Options 9. Portfolios and Risk Index

Reorganizing and reshaping data

When working with financial information, it is often the case that data retrieved from almost any data source will not be in the format that you need to perform the analyses that you want.

Or perhaps, just as likely, the data from a specific source may be incomplete and require collection of data from another source, at which point, the data needs to be either concatenated or merged through join-like operations across the data.

Even if the data is complete or after combining it from various sources, it may still be organized in a manner that is not conducive to a specific type of analysis. Hence, it needs to be restructured.

Fortunately, pandas provides rich capabilities for concatenating, merging, and pivoting data. These following sections take us through several common scenarios of each, using stock data.

Concatenating multiple DataFrame objects

Concatenation in pandas is the process of creating a new pandas object by combining data from two (or more pandas...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image