Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering NLP from Foundations to LLMs

You're reading from   Mastering NLP from Foundations to LLMs Apply advanced rule-based techniques to LLMs and solve real-world business problems using Python

Arrow left icon
Product type Paperback
Published in Apr 2024
Publisher Packt
ISBN-13 9781804619186
Length 340 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Meysam Ghaffari Meysam Ghaffari
Author Profile Icon Meysam Ghaffari
Meysam Ghaffari
Lior Gazit Lior Gazit
Author Profile Icon Lior Gazit
Lior Gazit
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Chapter 1: Navigating the NLP Landscape: A Comprehensive Introduction 2. Chapter 2: Mastering Linear Algebra, Probability, and Statistics for Machine Learning and NLP FREE CHAPTER 3. Chapter 3: Unleashing Machine Learning Potentials in Natural Language Processing 4. Chapter 4: Streamlining Text Preprocessing Techniques for Optimal NLP Performance 5. Chapter 5: Empowering Text Classification: Leveraging Traditional Machine Learning Techniques 6. Chapter 6: Text Classification Reimagined: Delving Deep into Deep Learning Language Models 7. Chapter 7: Demystifying Large Language Models: Theory, Design, and Langchain Implementation 8. Chapter 8: Accessing the Power of Large Language Models: Advanced Setup and Integration with RAG 9. Chapter 9: Exploring the Frontiers: Advanced Applications and Innovations Driven by LLMs 10. Chapter 10: Riding the Wave: Analyzing Past, Present, and Future Trends Shaped by LLMs and AI 11. Chapter 11: Exclusive Industry Insights: Perspectives and Predictions from World Class Experts 12. Index 13. Other Books You May Enjoy

What are LLMs and how are they different from LMs?

An LM is a type of ML model that is trained to predict the next word (or character or subword, depending on the granularity of the model) in a sequence, given the words that came before it (or in some models, the surrounding words). It’s a probabilistic model that is capable of generating text that follows a certain linguistic style or pattern.

Before the advent of Transformer-based models such as generative pretrained Transformers (GPTs) and Bidirectional Encoder Representations from Transformers (BERT), there were several other types of LMs widely used in NLP tasks. The following subsections discuss a few of them.

n-gram models

These are some of the simplest LMs. An n-gram model uses the (n-1) previous words to predict the nth word in a sentence. For example, in a bigram (2-gram) model, we would use the previous word to predict the next word. These models are easy to implement and computationally efficient, but they...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime