Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Data analysis with R

You're reading from   Mastering Data analysis with R Gain sharp insights into your data and solve real-world data science problems with R—from data munging to modeling and visualization

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher Packt
ISBN-13 9781783982028
Length 396 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Gergely Daróczi Gergely Daróczi
Author Profile Icon Gergely Daróczi
Gergely Daróczi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Hello, Data! 2. Getting Data from the Web FREE CHAPTER 3. Filtering and Summarizing Data 4. Restructuring Data 5. Building Models (authored by Renata Nemeth and Gergely Toth) 6. Beyond the Linear Trend Line (authored by Renata Nemeth and Gergely Toth) 7. Unstructured Data 8. Polishing Data 9. From Big to Small Data 10. Classification and Clustering 11. Social Network Analysis of the R Ecosystem 12. Analyzing Time-series 13. Data Around Us 14. Analyzing the R Community A. References Index

Factor analysis


Although the literature on confirmatory factor analysis (FA) is really impressive and is being highly used in, for example, social sciences, we will only focus on exploratory FA, where our goal is to identify some unknown, not observed variables based on other empirical data.

The latent variable model of FA was first introduced in 1904 by Spearman for one factor, and then Thurstone generalized the model for more than one factor in 1947. This statistical model assumes that the manifest variables available in the dataset are the results of latent variables that were not observed but can be tracked based on the observed data.

FA can deal with continuous (numeric) variables, and the model states that each observed variable is the sum of some unknown, latent factors.

Note

Please note the that normality, KMO, and Bartlett's tests are a lot more important to check before doing FA compared to PCA; the latter is a rather descriptive method while, in FA, we are actually building a model...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime