Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Managing Data Science

You're reading from   Managing Data Science Effective strategies to manage data science projects and build a sustainable team

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781838826321
Length 290 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Kirill Dubovikov Kirill Dubovikov
Author Profile Icon Kirill Dubovikov
Kirill Dubovikov
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

1. Section 1: What is Data Science?
2. What You Can Do with Data Science FREE CHAPTER 3. Testing Your Models 4. Understanding AI 5. Section 2: Building and Sustaining a Team
6. An Ideal Data Science Team 7. Conducting Data Science Interviews 8. Building Your Data Science Team 9. Section 3: Managing Various Data Science Projects
10. Managing Innovation 11. Managing Data Science Projects 12. Common Pitfalls of Data Science Projects 13. Creating Products and Improving Reusability 14. Section 4: Creating a Development Infrastructure
15. Implementing ModelOps 16. Building Your Technology Stack 17. Conclusion 18. Other Books You May Enjoy

Implementing ModelOps

In this chapter, we will look at ModelOps and its closest cousin—DevOps. We will explore how to build development pipelines for data science and make projects reliable, experiments reproducible, and deployments fast. To do this, we will familiarize ourselves with the general model training pipeline, and see how data science projects differ from software projects from the development infrastructure perspective. We will see what tools can help to version data, track experiments, automate testing, and manage Python environments. Using these tools, you will be able to create a complete ModelOps pipeline, which will automate the delivery of new model versions, while taking care of reproducibility and code quality.

In this chapter, we will cover the following topics:

  • Understanding ModelOps
  • Looking into DevOps
  • Managing code versions and quality
  • Storing data...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime