Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with R

You're reading from   Machine Learning with R Learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data

Arrow left icon
Product type Paperback
Published in May 2023
Publisher Packt
ISBN-13 9781801071321
Length 762 pages
Edition 4th Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Brett Lantz Brett Lantz
Author Profile Icon Brett Lantz
Brett Lantz
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Introducing Machine Learning 2. Managing and Understanding Data FREE CHAPTER 3. Lazy Learning – Classification Using Nearest Neighbors 4. Probabilistic Learning – Classification Using Naive Bayes 5. Divide and Conquer – Classification Using Decision Trees and Rules 6. Forecasting Numeric Data – Regression Methods 7. Black-Box Methods – Neural Networks and Support Vector Machines 8. Finding Patterns – Market Basket Analysis Using Association Rules 9. Finding Groups of Data – Clustering with k-means 10. Evaluating Model Performance 11. Being Successful with Machine Learning 12. Advanced Data Preparation 13. Challenging Data – Too Much, Too Little, Too Complex 14. Building Better Learners 15. Making Use of Big Data 16. Other Books You May Enjoy
17. Index

Making Use of Big Data

Although today’s most exciting machine learning research is found in the realm of big data—computer vision, natural language processing, autonomous vehicles, and so on—most business applications are much smaller scale, using what might be termed, at best, “medium” data. As noted in Chapter 12, Advanced Data Preparation, true big data work requires access to datasets and computing facilities generally found only at very large tech companies or research universities. Even then, the actual job of using these resources is often primarily a feat of data engineering, which simplifies the data greatly before its use in conventional business applications.

The good news is that the headline-making research conducted at big data companies eventually trickles down and can be applied in simpler forms to more traditional machine learning tasks. This chapter covers a variety of approaches for making use of such big data methods in R...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime