Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning With Go

You're reading from   Machine Learning With Go Implement Regression, Classification, Clustering, Time-series Models, Neural Networks, and More using the Go Programming Language

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781785882104
Length 304 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Joseph Langstaff Whitenack Joseph Langstaff Whitenack
Author Profile Icon Joseph Langstaff Whitenack
Joseph Langstaff Whitenack
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Gathering and Organizing Data 2. Matrices, Probability, and Statistics FREE CHAPTER 3. Evaluation and Validation 4. Regression 5. Classification 6. Clustering 7. Time Series and Anomaly Detection 8. Neural Networks and Deep Learning 9. Deploying and Distributing Analyses and Models 10. Algorithms/Techniques Related to Machine Learning

Gathering and Organizing Data

Polls have shown that 90% or more of a data scientist's time is spent gathering data, organizing it, and cleaning it, not training/tuning their sophisticated machine learning models. Why is this? Isn't the machine learning part the fun part? Why do we need to care so much about the state of our data? Firstly, without data, our machine learning models can't learn. This might seem obvious. However, we need to realize that part of the strength of the models that we build is in the data that we feed them. As the common phrase goes, garbage in, garbage out. We need to make sure that we gather relevant, clean data to power our machine learning models, such that they can operate on the data as expected and produce valuable results.

Not all types of data are appropriate when using certain types of models. For example, certain models do not perform well when we have high-dimensional data (for example, text data), and other models assume that variables are normally distributed, which is definitely not always the case. Thus, we must take care in gathering data that fits our use case and make sure that we understand how our data and models will interact.

Another reason why gathering and organizing data consumes so much of a data scientist's time is that data is often messy and hard to aggregate. In most organizations, data might be housed in various systems and formats, and have various access control policies. We can't assume that supplying a training set to our model will be as easy as specifying a file path; this is often not the case.

To form a training/test set or to supply variables to a model for predictions, we will likely need to deal with various formats of data, such as CSV, JSON, database tables, and so on, and we will likely need to transform individual values. Common transformations include parsing date times, converting categorical data to numerical data, normalizing values, and applying some function across values. However, we can't always assume that all values of a certain variable are present or able to be parsed in a similar manner.

Often data includes missing values, mixed types, or corrupted values. How we handle each of these scenarios will directly influence the quality of the models that we build, and thus, we have to be willing to carefully gather, organize, and understand our data.

Even though much of this book will be focused on various modeling techniques, you should always consider data gathering, parsing, and organization as a (or maybe the) key component of a successful data science project. If this part of your project is not carefully developed with a high level of integrity, you are setting yourself up for trouble in the long run.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image