Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning Using TensorFlow Cookbook

You're reading from   Machine Learning Using TensorFlow Cookbook Create powerful machine learning algorithms with TensorFlow

Arrow left icon
Product type Paperback
Published in Feb 2021
Publisher Packt
ISBN-13 9781800208865
Length 416 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Konrad Banachewicz Konrad Banachewicz
Author Profile Icon Konrad Banachewicz
Konrad Banachewicz
Luca Massaron Luca Massaron
Author Profile Icon Luca Massaron
Luca Massaron
Alexia Audevart Alexia Audevart
Author Profile Icon Alexia Audevart
Alexia Audevart
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started with TensorFlow 2.x 2. The TensorFlow Way FREE CHAPTER 3. Keras 4. Linear Regression 5. Boosted Trees 6. Neural Networks 7. Predicting with Tabular Data 8. Convolutional Neural Networks 9. Recurrent Neural Networks 10. Transformers 11. Reinforcement Learning with TensorFlow and TF-Agents 12. Taking TensorFlow to Production 13. Other Books You May Enjoy
14. Index

Introduction

In the previous chapters, we discussed Dense Neural Networks (DNNs) in which each neuron of a layer is connected to each neuron of the adjacent layer. In this chapter, we will focus on a special type of neural network that performs well for image classification: CNNs.

A CNN is a combination of two components: a feature extractor module followed by a trainable classifier. The first component includes a stack of convolution, activation, and pooling layers. A DNN does the classification. Each neuron in a layer is connected to those in the next layer.

In mathematics, a convolution is a function that is applied over the output of another function. In our case, we will consider using a matrix multiplication (filter) across an image. For our purposes, we find an image to be a matrix of numbers. These numbers may represent pixels or even image attributes. The convolution operation we will apply to these matrices involves moving a filter of fixed width across...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime