Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Kernel Programming

You're reading from   Linux Kernel Programming A comprehensive guide to kernel internals, writing kernel modules, and kernel synchronization

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781789953435
Length 754 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Kaiwan N. Billimoria Kaiwan N. Billimoria
Author Profile Icon Kaiwan N. Billimoria
Kaiwan N. Billimoria
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: The Basics
2. Kernel Workspace Setup FREE CHAPTER 3. Building the 5.x Linux Kernel from Source - Part 1 4. Building the 5.x Linux Kernel from Source - Part 2 5. Writing Your First Kernel Module - LKMs Part 1 6. Writing Your First Kernel Module - LKMs Part 2 7. Section 2: Understanding and Working with the Kernel
8. Kernel Internals Essentials - Processes and Threads 9. Memory Management Internals - Essentials 10. Kernel Memory Allocation for Module Authors - Part 1 11. Kernel Memory Allocation for Module Authors - Part 2 12. The CPU Scheduler - Part 1 13. The CPU Scheduler - Part 2 14. Section 3: Delving Deeper
15. Kernel Synchronization - Part 1 16. Kernel Synchronization - Part 2 17. About Packt 18. Other Books You May Enjoy

The slab allocator – pros and cons – a summation

In this section, we very briefly summarize things you have already learned by now. This is intended as a way for you to quickly look up and recollect these key points!

The pros of using the slab allocator (or slab cache) APIs to allocate and free kernel memory are as follows:

  • (Very) fast (as it uses pre-cached memory objects).
  • A physically contiguous memory chunk is guaranteed.
  • Hardware (CPU) cacheline-aligned memory is guaranteed when the SLAB_HWCACHE_ALIGN flag is used when creating the cache. This is the case for kmalloc(), kzalloc(), and so on.
  • You can create your own custom slab cache for particular (frequently alloc-ed/freed) objects.

The cons of using the slab allocator (or slab cache) APIs are the following:

  • A limited amount of memory can be allocated at a time; typically, just 8 KB directly via the slab interfaces, or up to 4 MB indirectly via the page allocator on most current platforms...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image