Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Tableau 2020

You're reading from   Learning Tableau 2020 Create effective data visualizations, build interactive visual analytics, and transform your organization

Arrow left icon
Product type Paperback
Published in Aug 2020
Publisher Packt
ISBN-13 9781800200364
Length 576 pages
Edition 4th Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Joshua N. Milligan Joshua N. Milligan
Author Profile Icon Joshua N. Milligan
Joshua N. Milligan
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Taking Off with Tableau 2. Connecting to Data in Tableau FREE CHAPTER 3. Moving Beyond Basic Visualizations 4. Starting an Adventure with Calculations and Parameters 5. Leveraging Level of Detail Calculations 6. Diving Deep with Table Calculations 7. Making Visualizations That Look Great and Work Well 8. Telling a Data Story with Dashboards 9. Visual Analytics – Trends, Clustering, Distributions, and Forecasting 10. Advanced Visualizations 11. Dynamic Dashboards 12. Exploring Mapping and Advanced Geospatial Features 13. Understanding the Tableau Data Model, Joins, and Blends 14. Structuring Messy Data to Work Well in Tableau 15. Taming Data with Tableau Prep 16. Sharing Your Data Story 17. Other Books You May Enjoy
18. Index

Leveraging spatial functions

Tableau continues to add native support for spatial functions. At the time of writing, Tableau supports the following functions:

  • Makeline() returns a line spatial object given two points.
  • Makepoint() returns a point spatial object given two coordinates.
  • Distance() returns the distance between two points in the desired units of measurement.
  • Buffer() creates a circle around a point with a radius of the given distance. You may specify the units of measurement.

We'll explore a few of these functions using the Hospital and Patients dataset in the Chapter 12 workbook. The dataset reimagines the real estate data as a hospital surrounded by patients, indicated in the following view by the difference in Shape, Size, and Color:

Figure 12.10: A hospital (represented by the star) surrounded by patients

There are numerous analytical questions we might ask. Let's focus on these:

  • How far is...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime