Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning Data Mining with Python

You're reading from   Learning Data Mining with Python Use Python to manipulate data and build predictive models

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787126787
Length 358 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Toc

Table of Contents (14) Chapters Close

Preface 1. Getting Started with Data Mining FREE CHAPTER 2. Classifying with scikit-learn Estimators 3. Predicting Sports Winners with Decision Trees 4. Recommending Movies Using Affinity Analysis 5. Features and scikit-learn Transformers 6. Social Media Insight using Naive Bayes 7. Follow Recommendations Using Graph Mining 8. Beating CAPTCHAs with Neural Networks 9. Authorship Attribution 10. Clustering News Articles 11. Object Detection in Images using Deep Neural Networks 12. Working with Big Data 13. Next Steps...

Training and classifying


We are now going to build a neural network that will take an image as input and try to predict which (single) letter is in the image.

We will use the training set of single letters we created earlier. The dataset itself is quite simple. We have a 20-by-20-pixel image, each pixel 1 (black) or 0 (white). These represent the 400 features that we will use as inputs into the neural network. The outputs will be 26 values between 0 and 1, where higher values indicate a higher likelihood that the associated letter (the first neuron is A, the second is B, and so on) is the letter represented by the input image.

We are going to use the scikit-learn's MLPClassifier for our neural network in this chapter.

Note

You will need a recent version of scikit-learn to use MLPClassifier. If the below import statement fails, try again after updating scikit-learn. You can do this using the following Anaconda command:  conda update scikit-learn

As for other scikit-learn classifiers, we import...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime