Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learn Microsoft Fabric

You're reading from   Learn Microsoft Fabric A practical guide to performing data analytics in the era of artificial intelligence

Arrow left icon
Product type Paperback
Published in Feb 2024
Publisher Packt
ISBN-13 9781835082287
Length 338 pages
Edition 1st Edition
Arrow right icon
Authors (2):
Arrow left icon
Bradley Schacht Bradley Schacht
Author Profile Icon Bradley Schacht
Bradley Schacht
Arshad Ali Arshad Ali
Author Profile Icon Arshad Ali
Arshad Ali
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1: An Introduction to Microsoft Fabric
2. Chapter 1: Overview of Microsoft Fabric and Understanding Its Different Concepts FREE CHAPTER 3. Chapter 2: Understanding Different Workloads and Getting Started with Microsoft Fabric 4. Part 2: Building End-to-End Analytics Systems
5. Chapter 3: Building an End-to-End Analytics System – Lakehouse 6. Chapter 4: Building an End-to-End Analytics System – Data Warehouse 7. Chapter 5: Building an End-to-End Analytics System – Real-Time Analytics 8. Chapter 6: Building an End-to-End Analytics System – Data Science 9. Part 3: Administration and Monitoring
10. Chapter 7: Monitoring Overview and Monitoring Different Workloads 11. Chapter 8: Administering Fabric 12. Part 4: Security and Developer Experience
13. Chapter 9: Security and Governance Overview 14. Chapter 10: Continuous Integration and Continuous Deployment (CI/CD) 15. Part 5: AI Assistance with Copilot Integration
16. Chapter 11: Overview of AI Assistance and Copilot Integration 17. Index 18. Other Books You May Enjoy

Understanding end-to-end scenarios

A lakehouse in Microsoft Fabric is a data storage layer that allows organizations to store and manage virtually any type of data (structured, semi-structured, and unstructured data) in a single location, allowing various tools and frameworks to process and analyze such data as per organizational needs and/or an individual’s preference.

A lakehouse combines the best aspects of a data lake and a data warehouse, removing the data duplicity and friction of ingesting, transforming, and sharing organizational data, all in the open format of Delta Lake. Ingested data flow into the lakehouse by default in the Delta Lake format (https://delta.io/), and tables are automatically discovered and registered in the metastore on behalf of users so that they’re available to seamlessly work with all the engines within Fabric.

A data analytics system based on a lakehouse typically follows Medallion architecture (https://learn.microsoft.com/en-us...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime