Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Music Generation with Magenta

You're reading from   Hands-On Music Generation with Magenta Explore the role of deep learning in music generation and assisted music composition

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher
ISBN-13 9781838824419
Length 360 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Alexandre DuBreuil Alexandre DuBreuil
Author Profile Icon Alexandre DuBreuil
Alexandre DuBreuil
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Introduction to Artwork Generation
2. Introduction to Magenta and Generative Art FREE CHAPTER 3. Section 2: Music Generation with Machine Learning
4. Generating Drum Sequences with the Drums RNN 5. Generating Polyphonic Melodies 6. Latent Space Interpolation with MusicVAE 7. Audio Generation with NSynth and GANSynth 8. Section 3: Training, Learning, and Generating a Specific Style
9. Data Preparation for Training 10. Training Magenta Models 11. Section 4: Making Your Models Interact with Other Applications
12. Magenta in the Browser with Magenta.js 13. Making Magenta Interact with Music Applications 14. Assessments 15. Other Books You May Enjoy

Preface

The place of machine learning in art is becoming more and more strongly established because of recent advancements in the field. Magenta is at the forefront of that innovation. This book provides a hands-on approach to machine learning models for music generation and demonstrates how to integrate them into an existing music production workflow. Complete with practical examples and explanations of the theoretical background required to understand the underlying technologies, this book is the perfect starting point to begin exploring music generation.

In Hands-On Music Generation with Magenta, you'll learn how to use models in Magenta to generate percussion sequences, monophonic and polyphonic melodies in MIDI, and instrument sounds in raw audio. We'll be seeing plenty of practical examples and in-depth explanations of machine learning models, such as Recurrent Neural Networks (RNNs), Variational Autoencoders (VAEs), and Generative Adversarial Networks (GANs). Leveraging that knowledge, we'll be creating and training our own models for advanced music generation use cases, and we'll be tackling the preparation of new datasets. Finally, we'll be looking at integrating Magenta with other technologies, such as Digital Audio Workstations (DAWs), and using Magenta.js to distribute music generation applications in the browser.

By the end of this book, you'll be proficient in everything Magenta has to offer and equipped with sufficient knowledge to tackle music generation in your own style.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime