Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Machine Learning with TensorFlow.js

You're reading from   Hands-On Machine Learning with TensorFlow.js A guide to building ML applications integrated with web technology using the TensorFlow.js library

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781838821739
Length 296 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Kai Sasaki Kai Sasaki
Author Profile Icon Kai Sasaki
Kai Sasaki
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: The Rationale of Machine Learning and the Usage of TensorFlow.js
2. Machine Learning for the Web FREE CHAPTER 3. Importing Pretrained Models into TensorFlow.js 4. TensorFlow.js Ecosystem 5. Section 2: Real-World Applications of TensorFlow.js
6. Polynomial Regression 7. Classification with Logistic Regression 8. Unsupervised Learning 9. Sequential Data Analysis 10. Dimensionality Reduction 11. Solving the Markov Decision Process 12. Section 3: Productionizing Machine Learning Applications with TensorFlow.js
13. Deploying Machine Learning Applications 14. Tuning Applications to Achieve High Performance 15. Future Work Around TensorFlow.js 16. Other Books You May Enjoy

Questions

  1. What is the benefit of building a machine learning model on the web?
  2. When we give the TensorHub model to tfjs-converter, what type of format will be generated?
    1. Layers model
    2. Graph model
  3. How many ways can we release the memory that's been allocated to a tensor in a model in TensorFlow.js?
  4. How can we inspect the structure of the model?
  5. Describe the major difference between the Core API and the Layers API. When should we use them?
  6. Construct a multilayer perceptron with the following layers:
    • The input is a vector with 784 elements.
    • The first intermediate layer is a fully connected layer whose output is a rectified linear unit and has a size of 32.
    • The second intermediate layer is a fully connected layer whose output is a rectified linear unit and has a size of 16.
    • The output is a softmax layer.
  7. Is it possible to save a model that contains a custom layer?
...
You have been reading a chapter from
Hands-On Machine Learning with TensorFlow.js
Published in: Nov 2019
Publisher: Packt
ISBN-13: 9781838821739
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime