Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Generative Adversarial Networks with PyTorch 1.x

You're reading from   Hands-On Generative Adversarial Networks with PyTorch 1.x Implement next-generation neural networks to build powerful GAN models using Python

Arrow left icon
Product type Paperback
Published in Dec 2019
Publisher Packt
ISBN-13 9781789530513
Length 312 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
John Hany John Hany
Author Profile Icon John Hany
John Hany
Greg Walters Greg Walters
Author Profile Icon Greg Walters
Greg Walters
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Introduction to GANs and PyTorch FREE CHAPTER
2. Generative Adversarial Networks Fundamentals 3. Getting Started with PyTorch 1.3 4. Best Practices for Model Design and Training 5. Section 2: Typical GAN Models for Image Synthesis
6. Building Your First GAN with PyTorch 7. Generating Images Based on Label Information 8. Image-to-Image Translation and Its Applications 9. Image Restoration with GANs 10. Training Your GANs to Break Different Models 11. Image Generation from Description Text 12. Sequence Synthesis with GANs 13. Reconstructing 3D models with GANs 14. Other Books You May Enjoy

Working with Fashion-MNIST

So you know by now that the MNIST dataset is comprised of a bunch of handwritten numbers. It is the defacto standard for the Machine Learning community, and it is often used to validate processes. Another group has decided to create another dataset that could be a better replacement. This project is named Fashion-MNIST and is designed to be a simple drop-in replacement. You can get a deeper understanding of the project at https://www.kaggle.com/zalando-research/fashionmnist/data#.

Fashion-MNIST consists of a training set of 60,000 images and labels and a test set of 10,000 images and labels. All images are grayscale and set to 28x28 pixels, and there are 10 classes of images, namely: T-shirt/top, Trouser, Pullover, Dress, Coat, Saldal, Shirt, Sneaker, Bag, and Ankle boot. You can already begin to see that this replacement dataset should work the algorithms...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime