Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Deep Learning with R

You're reading from   Hands-On Deep Learning with R A practical guide to designing, building, and improving neural network models using R

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher Packt
ISBN-13 9781788996839
Length 330 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Rodger Devine Rodger Devine
Author Profile Icon Rodger Devine
Rodger Devine
Michael Pawlus Michael Pawlus
Author Profile Icon Michael Pawlus
Michael Pawlus
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Deep Learning Basics
2. Machine Learning Basics FREE CHAPTER 3. Setting Up R for Deep Learning 4. Artificial Neural Networks 5. Section 2: Deep Learning Applications
6. CNNs for Image Recognition 7. Multilayer Perceptron for Signal Detection 8. Neural Collaborative Filtering Using Embeddings 9. Deep Learning for Natural Language Processing 10. Long Short-Term Memory Networks for Stock Forecasting 11. Generative Adversarial Networks for Faces 12. Section 3: Reinforcement Learning
13. Reinforcement Learning for Gaming 14. Deep Q-Learning for Maze Solving 15. Other Books You May Enjoy

Preface

Deep learning enables efficient and accurate learning from massive amounts of data. Deep learning is being adopted by numerous industries at an increasing pace since it can help solve a number of challenges that cannot easily be solved by means of traditional machine learning techniques.

Developers working with R will be able to put their knowledge to work with this practical guide to deep learning. This book provides a hands-on approach to implementation and associated methodologies that will have you up and running and productive in no time. Complete with step-by-step explanations of essential concepts and practical examples, you will begin by exploring deep learning in general, including an overview of deep learning advantages and architecture. You will explore the architecture of various deep learning algorithms and understand their applicable fields. You will also learn how to build deep learning models, optimize hyperparameters, and evaluate model performance.

By the end of this book, you will be able to build and deploy your own deep learning models and applications using deep learning frameworks and algorithms specific to your problem.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime