Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Hands-On Deep Learning with R
Hands-On Deep Learning with R

Hands-On Deep Learning with R: A practical guide to designing, building, and improving neural network models using R

Arrow left icon
Profile Icon Pawlus Profile Icon Rodger Devine
Arrow right icon
AU$60.99
Paperback Apr 2020 330 pages 1st Edition
eBook
AU$33.99 AU$48.99
Paperback
AU$60.99
Subscription
Free Trial
Renews at AU$24.99p/m
Arrow left icon
Profile Icon Pawlus Profile Icon Rodger Devine
Arrow right icon
AU$60.99
Paperback Apr 2020 330 pages 1st Edition
eBook
AU$33.99 AU$48.99
Paperback
AU$60.99
Subscription
Free Trial
Renews at AU$24.99p/m
eBook
AU$33.99 AU$48.99
Paperback
AU$60.99
Subscription
Free Trial
Renews at AU$24.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
Table of content icon View table of contents Preview book icon Preview Book

Hands-On Deep Learning with R

Machine Learning Basics

Welcome to Hands-On Deep Learning with R! This book will take you through all of the steps that are necessary to code deep learning models using the R statistical programming language. It begins with simple examples as the first step for those just getting started, along with a review of the foundational elements of deep learning for those with more experience. As you progress through this book, you will learn how to code increasingly complex deep learning solutions for a wide variety of tasks. However, regardless of the complexity, each chapter will carefully detail each step. This is so that all topics and concepts can be fully comprehended and the reason for every line of code is completely explained.

In this chapter, we will go through a quick overview of the machine learning process as it will form a base for the subsequent chapters of this book.&...

An overview of machine learning

All deep learning is machine learning, but not all machine learning is deep learning. Throughout this book, we will focus on processes and techniques that are specific to deep learning in R. However, all the core principles of machine learning are essential to understand before we can move on to explore deep learning.

Deep learning is marked as a special subset of machine learning based on the use of neural networks that mimic brain activity behavior. The learning is referred to as being deep because, during the modeling process, the data is manipulated by a number of hidden layers. In this type of modeling, specific information is gathered from each layer. For example, one layer may find the edges of images while another finds particular hues.

Notable applications for this type of machine learning include the following:

  • Image recognition...

Preparing data for modeling

One of the benefits of deep learning is that it largely removes the need for feature engineering, which you may be used to with machine learning. That being said, the data still needs to be prepared before we begin modeling. Let's review the following goals to prepare data for modeling:

  • Remove no-information and extremely low-information variables
  • Identify dates and extract date parts
  • Handle missing values
  • Handle outliers

In this chapter, we will be investigating air quality data using data provided by the London Air Quality Network. Specifically, we will look at readings for nitrogen dioxide in the area of Tower Hamlets (Mile End Road) during 2018. This is a very small dataset with only a few features and approximately 35,000 observations. We are using a limited dataset here so that all of our code, even our modeling, runs quickly. That said...

Training a model on prepared data

Now that the data is ready, we will split it into train and test sets and run a simple model. The objective at this point is not to try to achieve the best performance, but rather to get some type of a benchmark result to use in the future as we try to improve our model.

Train and test data

When we build predictive models, we need to create two separate sets of data with the help of the following segments. One is used by the model to learn the task and the other is used to test how well the model learned the task. Here are the types of data that we will look at:

  • Train data: The segment of the data used to fit the model. The model has access to the explainer variables or independent variables...

Evaluating model results

We only know whether a model is successful if we can measure it, and it is worthwhile taking a moment to remember which metrics to use in which scenarios. Take, for example, a credit card fraud dataset where there is a large imbalance in the target variable because there will only be a, relatively, few cases of fraud among many non-fraudulent cases.

If we use a metric that just measures the percentage of the target variable that we predict successfully, then we will not be evaluating our model in a very helpful way. In this case, to keep the math simple, let's imagine we have 10,000 cases and only 10 of them are fraudulent accounts. If we predict that all cases are not fraudulent, then we will have 99.9% accuracy. This is very accurate, but it is not very helpful. Here is a review of the different metrics and when to use them.

...

Improving model results

Since we have a regression problem, we now know why we chose RMSE, and we have a baseline metric of performance, we can begin to work on improving our model. Every model will have its own different way of improving results; however, we can generalize slightly. Feature engineering helps to improve model performance; however, since this type of work is less important with deep learning, we will not focus on that here. Also, we have already used feature engineering to generate our date and time parts. In addition, we can run our model for longer at a slower learning rate and we can tune hyperparameters. In order to find the best values using this type of model improvement method, we will use a technique called grid search to look at a range of values for a number of different fields.

Let's search for the optimal number of rounds. Using the cross-validation...

Reviewing different algorithms

We have raced through machine learning relatively quickly, as we wanted to focus on the underlying concepts that will follow along with us as we head into deep learning. As such, we cannot offer a comprehensive explanation of all machine learning techniques; however, we will quickly review the different algorithm types here, as this will be helpful to remember going forward.

We'll do a quick review of the following machine learning algorithms:

  • Decision Trees: A decision tree is a simple model that makes up the base learners of many more complex algorithms. A decision tree simply splits a dataset at a given variable and notes the proportion of the target class that exists in the splits. For example, if we were to predict who is more likely to enjoy playing with baby toys, then a split on age would likely show that the split of the data...

Summary

In this chapter, we referred to a raw dataset, explored the data, and took the necessary preprocessing steps to get the data ready for modeling. We performed data type transformations to convert numbers and dates being stored as character strings into numeric and date value columns, respectively. In addition, we performed some feature engineering by breaking up the date value into its component parts. After completing preprocessing, we modeled our data. We followed an approach that included creating a baseline model and then tuning hyperparameters to improve our initial score. We used early stopping rounds and grid searches to identify hyperparameter values that produced the best results. After modifying our model-based results from our tuning procedures, we noticed much better performance.

All of the aspects of machine learning that were discussed in this chapter will...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Understand deep learning algorithms and architectures using R and determine which algorithm is best suited for a specific problem
  • Improve models using parameter tuning, feature engineering, and ensembling
  • Apply advanced neural network models such as deep autoencoders and generative adversarial networks (GANs) across different domains

Description

Deep learning enables efficient and accurate learning from a massive amount of data. This book will help you overcome a number of challenges using various deep learning algorithms and architectures with R programming. This book starts with a brief overview of machine learning and deep learning and how to build your first neural network. You’ll understand the architecture of various deep learning algorithms and their applicable fields, learn how to build deep learning models, optimize hyperparameters, and evaluate model performance. Various deep learning applications in image processing, natural language processing (NLP), recommendation systems, and predictive analytics will also be covered. Later chapters will show you how to tackle recognition problems such as image recognition and signal detection, programmatically summarize documents, conduct topic modeling, and forecast stock market prices. Toward the end of the book, you will learn the common applications of GANs and how to build a face generation model using them. Finally, you’ll get to grips with using reinforcement learning and deep reinforcement learning to solve various real-world problems. By the end of this deep learning book, you will be able to build and deploy your own deep learning applications using appropriate frameworks and algorithms.

Who is this book for?

This book is for data scientists, machine learning engineers, and deep learning developers who are familiar with machine learning and are looking to enhance their knowledge of deep learning using practical examples. Anyone interested in increasing the efficiency of their machine learning applications and exploring various options in R will also find this book useful. Basic knowledge of machine learning techniques and working knowledge of the R programming language is expected.

What you will learn

  • Design a feedforward neural network to see how the activation function computes an output
  • Create an image recognition model using convolutional neural networks (CNNs)
  • Prepare data, decide hidden layers and neurons and train your model with the backpropagation algorithm
  • Apply text cleaning techniques to remove uninformative text using NLP
  • Build, train, and evaluate a GAN model for face generation
  • Understand the concept and implementation of reinforcement learning in R
Estimated delivery fee Deliver to Australia

Economy delivery 7 - 10 business days

AU$19.95

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Apr 24, 2020
Length: 330 pages
Edition : 1st
Language : English
ISBN-13 : 9781788996839
Vendor :
Google
Category :
Languages :
Concepts :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
Estimated delivery fee Deliver to Australia

Economy delivery 7 - 10 business days

AU$19.95

Product Details

Publication date : Apr 24, 2020
Length: 330 pages
Edition : 1st
Language : English
ISBN-13 : 9781788996839
Vendor :
Google
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
AU$24.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
AU$249.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just AU$5 each
Feature tick icon Exclusive print discounts
AU$349.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just AU$5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total AU$ 189.97
Hands-On Deep Learning with R
AU$60.99
Advanced Deep Learning with TensorFlow 2 and Keras
AU$60.99
Deep Learning with R Cookbook
AU$67.99
Total AU$ 189.97 Stars icon

Table of Contents

15 Chapters
Section 1: Deep Learning Basics Chevron down icon Chevron up icon
Machine Learning Basics Chevron down icon Chevron up icon
Setting Up R for Deep Learning Chevron down icon Chevron up icon
Artificial Neural Networks Chevron down icon Chevron up icon
Section 2: Deep Learning Applications Chevron down icon Chevron up icon
CNNs for Image Recognition Chevron down icon Chevron up icon
Multilayer Perceptron for Signal Detection Chevron down icon Chevron up icon
Neural Collaborative Filtering Using Embeddings Chevron down icon Chevron up icon
Deep Learning for Natural Language Processing Chevron down icon Chevron up icon
Long Short-Term Memory Networks for Stock Forecasting Chevron down icon Chevron up icon
Generative Adversarial Networks for Faces Chevron down icon Chevron up icon
Section 3: Reinforcement Learning Chevron down icon Chevron up icon
Reinforcement Learning for Gaming Chevron down icon Chevron up icon
Deep Q-Learning for Maze Solving Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela