Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Data Analysis with NumPy and pandas

You're reading from   Hands-On Data Analysis with NumPy and pandas Implement Python packages from data manipulation to processing

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781789530797
Length 168 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Curtis Miller Curtis Miller
Author Profile Icon Curtis Miller
Curtis Miller
Arrow right icon
View More author details
Toc

Handling missing data in a pandas DataFrame

In this section, we will be looking at how we can handle missing data in a pandas DataFrame. We have a few ways of detecting missing data that work for both series and DataFrames. We could use NumPy's isnan function; we could also use the isnull or notnull method supplied with series and DataFrames for detection. NaN detection could be useful for custom approaches for handling missing information.

In this Notebook, we're going to look at ways of managing missing information. First we generate a DataFrame containing missing data, illustrated in the following screenshot:

As mentioned before in pandas, missing information is encoded by NumPy's NaN. This is, obviously, not necessarily how missing information is encoded everywhere. For example, in some surveys, missing data is encoded by an impossible numeric value. Say, the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime