Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Graph Data Modeling in Python

You're reading from   Graph Data Modeling in Python A practical guide to curating, analyzing, and modeling data with graphs

Arrow left icon
Product type Paperback
Published in Jun 2023
Publisher Packt
ISBN-13 9781804618035
Length 236 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Gary Hutson Gary Hutson
Author Profile Icon Gary Hutson
Gary Hutson
Matt Jackson Matt Jackson
Author Profile Icon Matt Jackson
Matt Jackson
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: Getting Started with Graph Data Modeling
2. Chapter 1: Introducing Graphs in the Real World FREE CHAPTER 3. Chapter 2: Working with Graph Data Models 4. Part 2: Making the Graph Transition
5. Chapter 3: Data Model Transformation – Relational to Graph Databases 6. Chapter 4: Building a Knowledge Graph 7. Part 3: Storing and Productionizing Graphs
8. Chapter 5: Working with Graph Databases 9. Chapter 6: Pipeline Development 10. Chapter 7: Refactoring and Evolving Schemas 11. Part 4: Graphing Like a Pro
12. Chapter 8: Perfect Projections 13. Chapter 9: Common Errors and Debugging 14. Index 15. Other Books You May Enjoy

Pipeline Development

This chapter will involve you, as a progressing graph data scientist, getting directly involved in building production-grade schemas. Here, we will teach you everything we have acquired from our years of experience as graph practitioners.

The use case for our pipeline design in this chapter will be to develop a schema that can be used to look at customers purchasing habits, with the ultimate aim of building a recommendations system that can be used as new (unseen) data is added to the graph. This will function very much like a streaming service, where, instead of You might like this film recommendations, you will be given recommendations on products you are likely to buy. We will look at querying methods looking at product similarity, alongside a popular similarity matching method called Jaccard similarity.

Again, you will be working extensively with Neo4j and Python to integrate and build the pipeline seen in many production environments. I hope you are...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image