Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Go Standard Library Cookbook

You're reading from   Go Standard Library Cookbook Over 120 specific ways to make full use of the standard library components in Golang

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788475273
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Radomír Sohlich Radomír Sohlich
Author Profile Icon Radomír Sohlich
Radomír Sohlich
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Interacting with the Environment FREE CHAPTER 2. Strings and Things 3. Dealing with Numbers 4. Once Upon a Time 5. In and Out 6. Discovering the Filesystem 7. Connecting the Network 8. Working with Databases 9. Come to the Server Side 10. Fun with Concurrency 11. Tips and Tricks 12. Other Books You May Enjoy

Creating a program interface with the flag package

The previous recipe describes how to access the program arguments by a very generic approach.

This recipe will provide a way of defining an interface via the program flags. This approach dominates systems based on GNU/Linux, BSD, and macOS. The example of the program call could be ls -l which will, on *NIX systems, list the files in a current directory.

The Go package for flag handling does not support flag combining like ls -ll, where there are multiple flags after a single dash. Each flag must be separate. The Go flag package also does not differentiate between long options and short ones. Finally, -flag and --flag are equivalent.

How to do it...

  1. Open the console and create the folder chapter01/recipe03.
  2. Navigate to the directory.
  3. Create the main.go file with the following content:
        package main
import (
"flag"
"fmt"
"log"
"os"
"strings"
)

// Custom type need to implement
// flag.Value interface to be able to
// use it in flag.Var function.
type ArrayValue []string

func (s *ArrayValue) String() string {
return fmt.Sprintf("%v", *s)
}

func (a *ArrayValue) Set(s string) error {
*a = strings.Split(s, ",")
return nil
}

func main() {

// Extracting flag values with methods returning pointers
retry := flag.Int("retry", -1, "Defines max retry count")

// Read the flag using the XXXVar function.
// In this case the variable must be defined
// prior to the flag.
var logPrefix string
flag.StringVar(&logPrefix, "prefix", "", "Logger prefix")

var arr ArrayValue
flag.Var(&arr, "array", "Input array to iterate through.")

// Execute the flag.Parse function, to
// read the flags to defined variables.
// Without this call the flag
// variables remain empty.
flag.Parse()

// Sample logic not related to flags
logger := log.New(os.Stdout, logPrefix, log.Ldate)

retryCount := 0
for retryCount < *retry {
logger.Println("Retrying connection")
logger.Printf("Sending array %v\n", arr)
retryCount++
}
}
  1. Build the binary by executing the go build -o util.
  2. From the console, execute ./util -retry 2 -prefix=example -array=1,2.
  1. See the output in the Terminal:

How it works...

For the flag definition in code, the flag package defines two types of functions.

The first type is the simple name of the flag type such as Int. This function will return the pointer to the integer variable where the value of the parsed flag is.

The XXXVar functions are the second type. These provide the same functionality, but you need to provide the pointer to the variable. The parsed flag value will be stored in the given variable.

The Go library also supports a custom flag type. The custom type must implement the Value interface from the flag package.

As an example, let's say the flag retry defines the retry limit for reconnecting to the endpoint, the prefix flag defines the prefix of each row in a log, and the array is the array flag that will be send as an payload to server. The program call from the Terminal will look like ./util -retry 2 -prefix=example array=1,2.

The important part of the preceding code is the Parse() function which parses the defined flags from Args[1:]. The function must be called after all flags are defined and before the values are accessed.

The preceding code shows how to parse some data types from the command-line flags. Analogously, the other built-in types are parsed.

The last flag, array, demonstrates the definition of the custom type flag. Note that the ArrayType implements the Value interface from the flag package.

There's more...

The flag package contains more functions to design the interface with flags. It is worth reading the documentation for FlagSet.

By defining the new FlagSet, the arguments could be parsed by calling the myFlagset.Parse(os.Args[2:]). This way you can have flag subsets based on, for example, the first flag.

You have been reading a chapter from
Go Standard Library Cookbook
Published in: Feb 2018
Publisher: Packt
ISBN-13: 9781788475273
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime