Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Getting Started with Streamlit for Data Science
Getting Started with Streamlit for Data Science

Getting Started with Streamlit for Data Science: Create and deploy Streamlit web applications from scratch in Python

eBook
AU$69.99 AU$77.99
Paperback
AU$96.99
Subscription
Free Trial
Renews at AU$24.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Getting Started with Streamlit for Data Science

Chapter 1: An Introduction to Streamlit

Streamlit is a web application framework that helps you build and develop Python-based web applications that can be used to share analytics results, build complex interactive experiences, and illustrate new machine learning models. On top of that, developing and deploying Streamlit apps is incredibly fast and flexible, often turning application development time from days into hours.

In this chapter, we start out with the Streamlit basics. We will learn how to download and run demo Streamlit apps, how to edit demo apps using our own text editor, how to organize our Streamlit apps, and finally, how to make our very own. Then, we will explore the basics of data visualization in Streamlit. We will learn how to accept some initial user input, and then add some finishing touches to our own apps with text. At the end of this chapter, you should be comfortable starting to make your own Streamlit applications!

In particular, we will cover the following topics:

  • Why Streamlit?
  • Installing Streamlit
  • Organizing Streamlit apps
  • Streamlit plotting demo
  • Making an app from scratch

Before we begin, we will start with the technical requirements to make sure we have everything we need to get started.

Technical requirements

Here are the installations and setup required for this chapter:

  • The requirements for this book are to have Python 3.7 (or later) downloaded (https://www.python.org/downloads/), and have a text editor to edit Python files in. Any text editor will do. I use Sublime (https://www.sublimetext.com/3).
  • Some sections of this book use GitHub, and a GitHub account is recommended (https://github.com/join). Understanding how to use Git is not necessary for this book but is always useful. If you want to get started, this link has a useful tutorial: https://guides.github.com/activities/hello-world/.
  • A basic understanding of Python is also very useful for this book. If you are not there yet, feel free to spend some time getting to know Python better using this tutorial (https://docs.python.org/3/tutorial/) or any other of the freely and readily available tutorials out there, and come back here when you are ready. We also need to have the Streamlit library installed, which we will do and test in a later section called Installing Streamlit.

Why Streamlit?

Data scientists have become an increasingly valuable resource for companies and nonprofits over the course of the past decade. They help make data-driven decisions, make processes more efficient, and implement machine learning models to improve these decisions at a repeatable scale. One pain point for data scientists is in the process just after they have found a new insight or made a new model. What is the best way to show a dynamic result, a new model, or a complicated piece of analytics to a data scientist's colleagues? They can send a static visualization, which works in some cases but fails for complicated analyses that build on each other or on anything that requires user input. They can create a Word document (or export their Jupyter notebook as a document) that combines text and visualizations, which also doesn't work for user input and is harder to reproduce. Another option is to build out an entire web application from scratch using a framework such as Flask or Django, and then figure out how to deploy the entire app in AWS or another cloud provider. None of these options really work that well. Many are slow, don't take user input, or are suboptimal for informing the decision-making process so fundamental to data science.

Enter Streamlit. Streamlit is all about speed and interaction. It is a web application framework that helps you build and develop Python web applications. It has built-in and convenient methods for taking in user input, graphing using the most popular and powerful Python graphing libraries, and quickly deploying graphs to a web application.

I have spent the past year building Streamlit apps of all different flavors, from data projects for my personal portfolio to building quick applications for data science take-home problems, to even building mini-apps for repeatable analysis at work. I truly believe that Streamlit could be as valuable to you and your work as it has been to mine and wrote this to bring you quickly up to speed so you can accelerate your learning curve and get to building web applications in minutes and hours instead of days. If this is for you, read on! We will work in three sections, starting with an introduction to Streamlit, and ramp you up to building your own basic Streamlit applications. In part two, we'll extend this knowledge to more advanced topics such as production deployment methods and using components created by the Streamlit community for increasingly beautiful and usable Streamlit apps. And in the last part, we'll focus heavily on interviews with power users who use Streamlit at work, in academia, and for learning data science techniques. Before we begin, we need to get Streamlit set up and discuss how the rest of this book's examples will be structured.

Installing Streamlit

In order to run any Streamlit apps, you must first install Streamlit. I've used a package manager called pip to do this, but you can install it using any package manager you choose (for example, brew). This book uses Streamlit version 0.81, and Python 3.7, but it should work on newer versions as well.

Throughout this book, we'll be using a mix of both terminal commands and code written in Python scripts. We will signpost in which location to run the code to make this as clear as possible. To install Streamlit, run the following code in a terminal:

pip install streamlit

Now that we have Streamlit downloaded, we can call it directly from our command line using the preceding code to kick off Streamlit's demo.streamlit hello.

Take some time to explore Streamlit's demo and take a glance at any code that you find interesting! We're going to borrow and edit the code behind the plotting demo, which illustrates a combination of plotting and animation with Streamlit. Before we dive in, let's take a second and talk about how to organize Streamlit apps.

Organizing Streamlit apps

Each Streamlit app we create in this book should be contained in its own folder. It is tempting to create new files for each Streamlit app, but this promotes a bad habit that will bite us later when we talk about deploying Streamlit apps and deal with permissions and data for Streamlit.

For this book, I would recommend that you have a dedicated individual folder that will house all the apps you'll create throughout this book. I have named mine streamlit_apps. The following command will make a new folder called streamlit_apps and make it our current working directory:

mkdir streamlit_apps
cd streamlit_apps

All the code for this book is housed at https://github.com/tylerjrichards/Getting-Started-with-Streamlit-for-Data-Science, but I would highly recommend coding these by hand for practice.

Streamlit plotting demo

First, we're going to start to learn how to make Streamlit apps by reproducing the plotting demo we saw before in the Streamlit demo, with a Python file that we've made ourselves. In order to do that, we will do the following:

  1. Make a Python file where we will house all our Streamlit code.
  2. Use the plotting code given in the demo.
  3. Make small edits for practice.
  4. Run our file locally.

Our first step is to create a folder called plotting_app, which will house our first example. The following code makes this folder when run in the terminal, changes our working directory to plotting_app, and creates an empty Python file we'll call plot_demo.py:

mkdir plotting_app
cd plotting_app
touch plot_demo.py

Now that we've made a file called plot_demo.py, open it with any text editor (if you don't have one already, I'm partial to Sublime (https://www.sublimetext.com/). When you open it up, copy and paste the following code to your plot_demo.py file:

import streamlit as st
import time
import numpy as np
progress_bar = st.sidebar.progress(0)
status_text = st.sidebar.empty()
last_rows = np.random.randn(1, 1)
chart = st.line_chart(last_rows)
for i in range(1, 101):
    new_rows = last_rows[-1, :] + np.random.randn(5, 1).cumsum(axis=0)
    status_text.text("%i%% Complete" % i)
    chart.add_rows(new_rows)
    progress_bar.progress(i)
    last_rows = new_rows
    time.sleep(0.05)
progress_bar.empty()
# Streamlit widgets automatically run the script from top to bottom. Since
# this button is not connected to any other logic, it just causes a plain
# rerun.
st.button("Re-run")

This code does a few things. First, it imports all the libraries needed and creates a line chart in Streamlit's native graphing framework that starts at a random number sampled from a normal distribution with mean 0 and variance 1. And then it runs a for loop that keeps sampling new random numbers in bunches of 5 and adding that to the sum we had before while waiting for a twentieth of a second so we can see the graph change, simulating an animation.

By the end of this book, you will be able to make apps like this extremely quickly. But for now, let's run this locally by typing the following code in our terminal:

streamlit run plot_demo.py

This should open a new tab with your app in your default web browser. We should see our app run as shown in the following figure:

Figure 1.1 – Plotting demo output

Figure 1.1 – Plotting demo output

This is how we will run every Streamlit app, by first calling streamlit run and then pointing Streamlit toward the Python script that houses our app's code. Now let's change something small within the app so we better understand how Streamlit works. The following code changes how many random numbers we plot on our graph, but feel free to make any changes you'd like. Make your changes using the following code, save your changes in your text editor of choice, and run the file again:

import streamlit as st
import time
import numpy as np
progress_bar = st.sidebar.progress(0)
status_text = st.sidebar.empty()
last_rows = np.random.randn(1, 1)
chart = st.line_chart(last_rows)
for i in range(1, 101):
    new_rows = last_rows[-1, :] + np.random.randn(50, 1).cumsum(axis=0)
    status_text.text("%i%% Complete" % i)
    chart.add_rows(new_rows)
    progress_bar.progress(i)
    last_rows = new_rows
    time.sleep(0.05)
progress_bar.empty()
# Streamlit widgets automatically run the script from top to bottom. Since
# this button is not connected to any other logic, it just causes a plain
# rerun.
st.button("Re-run")

You should notice that Streamlit detected a change to the source file and is prompting you to rerun the file if you'd like. Click Rerun (or Always rerun if you want this behavior to be the default, which I almost always do), and watch your app change.

Feel free to try making some other changes to the plotting app to get the hang of it! Once you are ready, let's move on to making our own apps.

Left arrow icon Right arrow icon

Key benefits

  • Learn how to showcase machine learning models in a Streamlit application effectively and efficiently
  • Become an expert Streamlit creator by getting hands-on with complex application creation
  • Discover how Streamlit enables you to create and deploy apps effortlessly

Description

Streamlit shortens the development time for the creation of data-focused web applications, allowing data scientists to create web app prototypes using Python in hours instead of days. Getting Started with Streamlit for Data Science takes a hands-on approach to helping you learn the tips and tricks that will have you up and running with Streamlit in no time. You'll start with the fundamentals of Streamlit by creating a basic app and gradually build on the foundation by producing high-quality graphics with data visualization and testing machine learning models. As you advance through the chapters, you’ll walk through practical examples of both personal data projects and work-related data-focused web applications, and get to grips with more challenging topics such as using Streamlit Components, beautifying your apps, and quick deployment of your new apps. By the end of this book, you’ll be able to create dynamic web apps in Streamlit quickly and effortlessly using the power of Python.

Who is this book for?

This book is for data scientists and machine learning enthusiasts who want to create web apps using Streamlit. Whether you’re a junior data scientist looking to deploy your first machine learning project in Python to improve your resume or a senior data scientist who wants to use Streamlit to make convincing and dynamic data analyses, this book will help you get there! Prior knowledge of Python programming will assist with understanding the concepts covered.

What you will learn

  • Set up your first development environment and create a basic Streamlit app from scratch
  • Explore methods for uploading, downloading, and manipulating data in Streamlit apps
  • Create dynamic visualizations in Streamlit using built-in and imported Python libraries
  • Discover strategies for creating and deploying machine learning models in Streamlit
  • Use Streamlit sharing for one-click deployment
  • Beautify Streamlit apps using themes, Streamlit Components, and Streamlit sidebar
  • Implement best practices for prototyping your data science work with Streamlit

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Aug 20, 2021
Length: 282 pages
Edition : 1st
Language : English
ISBN-13 : 9781800563209
Category :
Languages :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Aug 20, 2021
Length: 282 pages
Edition : 1st
Language : English
ISBN-13 : 9781800563209
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
AU$24.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
AU$249.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just AU$5 each
Feature tick icon Exclusive print discounts
AU$349.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just AU$5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total AU$ 222.97
Interactive Dashboards and Data Apps with Plotly and Dash
AU$71.99
Getting Started with Streamlit for Data Science
AU$96.99
Data Science Projects with Python
AU$53.99
Total AU$ 222.97 Stars icon

Table of Contents

16 Chapters
Section 1: Creating Basic Streamlit Applications Chevron down icon Chevron up icon
Chapter 1: An Introduction to Streamlit Chevron down icon Chevron up icon
Chapter 2: Uploading, Downloading, and Manipulating Data Chevron down icon Chevron up icon
Chapter 3: Data Visualization Chevron down icon Chevron up icon
Chapter 4: Using Machine Learning with Streamlit Chevron down icon Chevron up icon
Chapter 5: Deploying Streamlit with Streamlit Sharing Chevron down icon Chevron up icon
Section 2: Advanced Streamlit Applications Chevron down icon Chevron up icon
Chapter 6: Beautifying Streamlit Apps Chevron down icon Chevron up icon
Chapter 7: Exploring Streamlit Components Chevron down icon Chevron up icon
Chapter 8: Deploying Streamlit Apps with Heroku and AWS Chevron down icon Chevron up icon
Section 3: Streamlit Use Cases Chevron down icon Chevron up icon
Chapter 9: Improving Job Applications with Streamlit Chevron down icon Chevron up icon
Chapter 10: The Data Project – Prototyping Projects in Streamlit Chevron down icon Chevron up icon
Chapter 11: Using Streamlit for Teams Chevron down icon Chevron up icon
Chapter 12: Streamlit Power Users Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.7
(21 Ratings)
5 star 90.5%
4 star 0%
3 star 4.8%
2 star 0%
1 star 4.8%
Filter icon Filter
Top Reviews

Filter reviews by




Brusher Aug 21, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This book got me started with Streamlit and I’ve never built data applications faster
Amazon Verified review Amazon
J. Noble Dec 30, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
As a new Streamlit user, this was an outstanding resource for creating new projections with simple, step by step instructions.
Amazon Verified review Amazon
Daniel Cajigas Aug 20, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Great book - easy to read and very helpful
Amazon Verified review Amazon
WU. Dec 21, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Excellent guide for getting up to speed fast using Streamlit for data science projects. The step-by-step instructions are on-point and will have building great looking, user-friendly apps in hours. Serioulsy, it's never been easier to build a quick prototype and deploy it on the web. No HTML or CSS needed.I looked into Streamlit cause I wanted to productionize some projects and start building a data science portfolio to showcase my interests, etc.Case-and-point: some time ago I got frustrated with the lack of dashboards at the Peloton website. I wanted to see basic things like the number of workouts performed under which instructor, number of hours spent working out, time of day stats, etc. This is nowhere to be found on the Peloton site.So I just built my own using python for the backend, plotly for the charts and streamlit for the front-end and deployment. You can find it here: mypelotondashboardapp(dot)comYou won't find a better resource out there. Trust me. Highly recommended!
Amazon Verified review Amazon
WesleyPruitt Aug 21, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Cohesive and loaded with information. The go-to resource for data-focused web applications with Streamlit
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.