Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Generative Adversarial Networks Cookbook

You're reading from   Generative Adversarial Networks Cookbook Over 100 recipes to build generative models using Python, TensorFlow, and Keras

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789139907
Length 268 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Josh Kalin Josh Kalin
Author Profile Icon Josh Kalin
Josh Kalin
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. What Is a Generative Adversarial Network? 2. Data First, Easy Environment, and Data Prep FREE CHAPTER 3. My First GAN in Under 100 Lines 4. Dreaming of New Outdoor Structures Using DCGAN 5. Pix2Pix Image-to-Image Translation 6. Style Transfering Your Image Using CycleGAN 7. Using Simulated Images To Create Photo-Realistic Eyeballs with SimGAN 8. From Image to 3D Models Using GANs 9. Other Books You May Enjoy

Generative and discriminative models

Machine learning (ML) and deep learning can be described by two terms: generative and discriminative modeling. When discussing the machine learning techniques that most people are familiar with, the thinking of a discriminative modeling technique, such as classification.

How to do it...

The difference between these two types of can be described by the following analogy:

  • Discriminative modeling: Observe paintings and determine the style of painting based on observations.

Here are a few steps that describe how we would do this in machine learning:

  1. First, we create a machine learning model that use convolutional layers or other learned features to understand the divisions in the data
  2. Next, we collect a dataset that has both a training set (60-90% of your data) and a validation dataset (10-40% of your data)
  3. Train the machine learning model using your data
  1.  Use this model to predict which datapoint belongs to a particular class - in our example, which painting belongs to which author
  • Generative modeling: Learn and reproduce paintings in various painters' styles and determine the painting style from the styles you learned.

Here are a few steps to describe a possible way to accomplish this type of modeling:

  1. Create a machine learning model that learns how to reproduce different painting styles
  2. Collect a training and validation dataset
  3. Train the machine learning model using the data
  4. Use this model to predict (inference) to produce examples of the paint author - use similarity metrics to verify the ability of the model to reproduce the painting style.

How it works...

Discriminative models will learn the boundary conditions between classes for a distribution:

  • Discriminative models get their power from more data
  • These models are not designed to work in an unsupervised manner or with unlabeled data

This can be described in a more graphical way, as follows:

  • Generative models will model the distribution of the classes for a given input distribution:
    • This creates a probabilistic model of each class in order to estimate the distribution
    • A generative model has the ability to use unlabeled data since it learns labels during the training process

This can be described in a more graphical way, as follows:

So, generative models are incredibly difficult to produce as they have to accurately model and reproduce the input distribution. The discriminative models are learning decision boundaries, which is why neural networks have been incredibly successful in recent years. The GAN architecture represents a radical departure from older techniques in the generative modeling area. We'll cover how neural networks are developed and then dive right in the GAN architecture development.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image