Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning for Natural Language Processing

You're reading from   Deep Learning for Natural Language Processing Solve your natural language processing problems with smart deep neural networks

Arrow left icon
Product type Paperback
Published in Jun 2019
Publisher
ISBN-13 9781838550295
Length 372 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Karthiek Reddy Bokka Karthiek Reddy Bokka
Author Profile Icon Karthiek Reddy Bokka
Karthiek Reddy Bokka
Monicah Wambugu Monicah Wambugu
Author Profile Icon Monicah Wambugu
Monicah Wambugu
Tanuj Jain Tanuj Jain
Author Profile Icon Tanuj Jain
Tanuj Jain
Shubhangi Hora Shubhangi Hora
Author Profile Icon Shubhangi Hora
Shubhangi Hora
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

About the Book 1. Introduction to Natural Language Processing FREE CHAPTER 2. Applications of Natural Language Processing 3. Introduction to Neural Networks 4. Foundations of Convolutional Neural Network 5. Recurrent Neural Networks 6. Gated Recurrent Units (GRUs) 7. Long Short-Term Memory (LSTM) 8. State-of-the-Art Natural Language Processing 9. A Practical NLP Project Workflow in an Organization 1. Appendix

Neural Language Translation

The simple binary classifier described in the previous section is a basic use case for the area of natural language processing (NLP) and doesn't fully justify the use of any techniques that are more complex than using a simple RNN or even simpler techniques. However, there are many complex use cases for which it is imperative to use more complex units such as LSTMs. Neural language translation is one such application.

The goal of a neural language translation task is to build a model that can translate a piece of text from a source language to a target language. Before starting with the code, let's discuss the architecture of this system.

Neural language translation represents a many-to-many NLP application, which means that there are many inputs to the system and the system produces many outputs as well.

Additionally, the number of inputs and outputs could be different as the same text can have a different number of words in the source and target language...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime