Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science Projects with Python

You're reading from   Data Science Projects with Python A case study approach to successful data science projects using Python, pandas, and scikit-learn

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781838551025
Length 374 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Stephen Klosterman Stephen Klosterman
Author Profile Icon Stephen Klosterman
Stephen Klosterman
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Data Science Projects with Python
Preface
1. Data Exploration and Cleaning FREE CHAPTER 2. Introduction toScikit-Learn and Model Evaluation 3. Details of Logistic Regression and Feature Exploration 4. The Bias-Variance Trade-off 5. Decision Trees and Random Forests 6. Imputation of Missing Data, Financial Analysis, and Delivery to Client Appendix

Decision trees


Decision trees and the machine learning models that are based on them, in particular random forests and gradient boosted trees, are fundamentally different types of models than generalized linear models, such as logistic regression. GLMs are rooted in the theories of classical statistics, which have a long history. The mathematics behind linear regression were originally developed at the beginning of the 19th century, by Legendre and Gauss. Because of this, the normal distribution is also called the Gaussian.

In contrast, while the idea of using a tree process to make decisions is relatively simple, the popularity of decision trees as mathematical models has come about more recently. The mathematical procedures that we currently use for formulating decision trees in the context of predictive modeling were published in the 1980s. The reason for this more recent development is that the methods used to grow decision trees rely on computational power – that is, the ability to crunch...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime