Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Engineering with Google Cloud Platform

You're reading from   Data Engineering with Google Cloud Platform A practical guide to operationalizing scalable data analytics systems on GCP

Arrow left icon
Product type Paperback
Published in Mar 2022
Publisher Packt
ISBN-13 9781800561328
Length 440 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Adi Wijaya Adi Wijaya
Author Profile Icon Adi Wijaya
Adi Wijaya
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Getting Started with Data Engineering with GCP
2. Chapter 1: Fundamentals of Data Engineering FREE CHAPTER 3. Chapter 2: Big Data Capabilities on GCP 4. Section 2: Building Solutions with GCP Components
5. Chapter 3: Building a Data Warehouse in BigQuery 6. Chapter 4: Building Orchestration for Batch Data Loading Using Cloud Composer 7. Chapter 5: Building a Data Lake Using Dataproc 8. Chapter 6: Processing Streaming Data with Pub/Sub and Dataflow 9. Chapter 7: Visualizing Data for Making Data-Driven Decisions with Data Studio 10. Chapter 8: Building Machine Learning Solutions on Google Cloud Platform 11. Section 3: Key Strategies for Architecting Top-Notch Data Pipelines
12. Chapter 9: User and Project Management in GCP 13. Chapter 10: Cost Strategy in GCP 14. Chapter 11: CI/CD on Google Cloud Platform for Data Engineers 15. Chapter 12: Boosting Your Confidence as a Data Engineer 16. Other Books You May Enjoy

Chapter 1: Fundamentals of Data Engineering

Years ago, when I first entered the data science world, I used to think data was clean. Clean in terms of readiness, available in one place, and ready for fun data science purposes. I was so excited to experiment with machine learning models, finding unusual patterns in data and playing around with clean data. But after years of experience working with data, I realized that data science in big organizations isn't straightforward. 

Eighty percent of the effort goes into collecting, cleaning, and transforming the data. If you have had any experience in working with data, I am sure you've noticed something similar. But the good news is, we know that almost all processes can be automated using proper planning, designing, and engineering skills. That was the point where I realized that data engineering will be the most critical role from that day to the future of the data science world. 

To develop a successful data ecosystem in any organization, the most crucial part is how they design the data architecture. If the organization fails to make the best decision on the data architecture, the future process will be painful. Here are some common examples: the system is not scalable, querying data is slow, business users don't trust your data, the infrastructure cost is very high, and data is leaked. There is so much more that can go wrong without proper data engineering practice. 

In this chapter, we are going to learn the fundamental knowledge behind data engineering. The goal is to introduce you to common terms that are often used in this field and will be mentioned often in the later chapters. 

In particular, we will be covering the following topics:

  • Understanding the data life cycle
  • Know the roles of a data engineer before starting
  • Foundational concepts for data engineering
You have been reading a chapter from
Data Engineering with Google Cloud Platform
Published in: Mar 2022
Publisher: Packt
ISBN-13: 9781800561328
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime