Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Analysis with Python

You're reading from   Data Analysis with Python A Modern Approach

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789950069
Length 490 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Taieb David Taieb
Author Profile Icon David Taieb
David Taieb
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Programming and Data Science – A New Toolset FREE CHAPTER 2. Python and Jupyter Notebooks to Power your Data Analysis 3. Accelerate your Data Analysis with Python Libraries 4. Publish your Data Analysis to the Web - the PixieApp Tool 5. Python and PixieDust Best Practices and Advanced Concepts 6. Analytics Study: AI and Image Recognition with TensorFlow 7. Analytics Study: NLP and Big Data with Twitter Sentiment Analysis 8. Analytics Study: Prediction - Financial Time Series Analysis and Forecasting 9. Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis 10. The Future of Data Analysis and Where to Develop your Skills A. PixieApp Quick-Reference Other Books You May Enjoy Index

Putting these concepts into practice

After 4 years as the Watson Core Tooling lead architect building self-service tooling for the Watson Question Answering system, I joined the Developer Advocacy team of the Watson Data Platform organization which has the expanded mission of creating a platform that brings the portfolio of data and cognitive services to the IBM public cloud. Our mission was rather simple: win the hearts and minds of developers and help them be successful with their data and AI projects.

The work had multiple dimensions: education, evangelism, and activism. The first two are pretty straightforward, but the concept of activism is relevant to this discussion and worth explaining in more details. As the name implies, activism is about bringing change where change is needed. For our team of 15 developer advocates, this meant walking in the shoes of developers as they try to work with data—whether they're only getting started or already operationalizing advanced algorithms—feel their pain and identify the gaps that should be addressed. To that end, we built and made open source numerous sample data pipelines with real-life use cases.

At a minimum, each of these projects needed to satisfy three requirements:

  • The raw data used as input must be publicly available
  • Provide clear instructions for deploying the data pipeline on the cloud in a reasonable amount of time
  • Developers should be able to use the project as a starting point for similar scenarios, that is, the code must be highly customizable and reusable

The experience and insights we gained from these exercises were invaluable:

  • Understanding which data science tools are best suited for each task
  • Best practice frameworks and languages
  • Best practice architectures for deploying and operationalizing analytics

The metrics that guided our choices were multiple: accuracy, scalability, code reusability, but most importantly, improved collaboration between data scientists and developers.

You have been reading a chapter from
Data Analysis with Python
Published in: Dec 2018
Publisher: Packt
ISBN-13: 9781789950069
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime