Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Dancing with Qubits

You're reading from   Dancing with Qubits From qubits to algorithms, embark on the quantum computing journey shaping our future

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781837636754
Length 684 pages
Edition 2nd Edition
Arrow right icon
Author (1):
Arrow left icon
Robert S. Sutor Robert S. Sutor
Author Profile Icon Robert S. Sutor
Robert S. Sutor
Arrow right icon
View More author details
Toc

Table of Contents (26) Chapters Close

Preface I Foundations
Why Quantum Computing FREE CHAPTER They’re Not Old, They’re Classics More Numbers Than You Can Imagine Planes and Circles and Spheres, Oh My Dimensions 6 What Do You Mean “Probably”? II Quantum Computing
One Qubit Two Qubits, Three Wiring Up the Circuits From Circuits to Algorithms Getting Physical III Advanced Topics
Considering NISQ Algorithms Introduction to Quantum Machine Learning Questions about the Future Afterword
A Quick Reference B Notices C Production Notes Other Books You May Enjoy
References
Index
Appendices

10.1 Quantum Fourier Transform

The Quantum Fourier Transform (QFT) is widely used in quantum computing. We need it in this chapter to estimate eigenvalues via the function order and period finding algorithm in section 10.5. We then use that in Shor’s factoring algorithm in section 10.7. If that weren’t enough, the Hadamard H is the 1-qubit QFT, and we’ve seen many examples of its use. algorithm$Quantum Fourier Transform Quantum Fourier Transform

Other applications of the QFT include quantum Monte Carlo, 77 and the Harrow-Hassidim-Loyd (HHL) algorithm for solving systems of linear equations under restrictive conditions. 105 63 algorithm$Monte Carlo Monte Carlo algorithm algorithm$Harrow-Hassidim-Loyd Harrow-Hassidim-Loyd algorithm algorithm$HHL HHL algorithm

Most treatments of the QFT start by comparing it to the classical Discrete Fourier Transform and then the Fast Fourier Transform. If you don’t know either of these, don’t worry...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime