Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applied Supervised Learning with Python

You're reading from   Applied Supervised Learning with Python Use scikit-learn to build predictive models from real-world datasets and prepare yourself for the future of machine learning

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher
ISBN-13 9781789954920
Length 404 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ishita Mathur Ishita Mathur
Author Profile Icon Ishita Mathur
Ishita Mathur
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Arrow right icon
View More author details
Toc

Chapter 2. Exploratory Data Analysis and Visualization

Note

Learning Objectives

By the end of the chapter, you will be able to:

  • Explain the importance of data exploration and communicate the summary statistics of a dataset

  • Visualize patterns in missing values in data and be able to replace null values appropriately

  • Identify continuous features and categorical features

  • Visualize distributions of values across individual variables

  • Describe and analyze relationships between different types of variables using correlation and visualizations

Note

This chapter takes us through how to perform exploration and analysis on a new dataset.

You have been reading a chapter from
Applied Supervised Learning with Python
Published in: Apr 2019
Publisher:
ISBN-13: 9781789954920
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime