Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applied Deep Learning with Keras

You're reading from   Applied Deep Learning with Keras Solve complex real-life problems with the simplicity of Keras

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher
ISBN-13 9781838555078
Length 412 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Matthew Moocarme Matthew Moocarme
Author Profile Icon Matthew Moocarme
Matthew Moocarme
Mahla Abdolahnejad Mahla Abdolahnejad
Author Profile Icon Mahla Abdolahnejad
Mahla Abdolahnejad
Ritesh Bhagwat Ritesh Bhagwat
Author Profile Icon Ritesh Bhagwat
Ritesh Bhagwat
Arrow right icon
View More author details
Toc

Introduction


Neural networks are the building blocks of all deep learning models. In traditional neural networks, all the inputs and outputs are independent. However, there are instances where a particular output is dependent on the previous output of the system. Consider the stock price of a company as an example – the output at the end of any given day is related to the output of the previous day. Similarly, in Natural Language Processing (NLP), the final words in a sentence are dependent on the previous words in the sentence. A special type of neural network, called a Recurrent Neural Network (RNN), is used to solve these types of problems where the network needs to remember previous outputs. This chapter introduces and explores the concepts and applications of RNNs. It also explains how RNNs are different from standard feedforward neural networks. You will also gain an understanding of what the vanishing gradient problem is and a Long-Short-Term-Memory (LSTM) network. This chapter also...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image