Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with TensorFlow 2 and Keras

You're reading from   Advanced Deep Learning with TensorFlow 2 and Keras Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781838821654
Length 512 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Rowel Atienza Rowel Atienza
Author Profile Icon Rowel Atienza
Rowel Atienza
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Introducing Advanced Deep Learning with Keras 2. Deep Neural Networks FREE CHAPTER 3. Autoencoders 4. Generative Adversarial Networks (GANs) 5. Improved GANs 6. Disentangled Representation GANs 7. Cross-Domain GANs 8. Variational Autoencoders (VAEs) 9. Deep Reinforcement Learning 10. Policy Gradient Methods 11. Object Detection 12. Semantic Segmentation 13. Unsupervised Learning Using Mutual Information 14. Other Books You May Enjoy
15. Index

Autoencoders

In the previous chapter, Chapter 2, Deep Neural Networks, we introduced the concept of deep neural networks. We're now going to move on to look at autoencoders, which are a neural network architecture that attempts to find a compressed representation of the given input data.

Similar to the previous chapters, the input data may be in multiple forms, including speech, text, image, or video. An autoencoder will attempt to find a representation or piece of code in order to perform useful transformations on the input data. As an example, when denoising autoencoders, a neural network will attempt to find a code that can be used to transform noisy data into clean data. Noisy data could be in the form of an audio recording with static noise that is then converted into clear sound. Autoencoders will learn the code automatically from the data alone without human labeling. As such, autoencoders can be classified under unsupervised learning algorithms.

In later...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime