Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with TensorFlow 2 and Keras

You're reading from   Advanced Deep Learning with TensorFlow 2 and Keras Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781838821654
Length 512 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Rowel Atienza Rowel Atienza
Author Profile Icon Rowel Atienza
Rowel Atienza
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Introducing Advanced Deep Learning with Keras 2. Deep Neural Networks FREE CHAPTER 3. Autoencoders 4. Generative Adversarial Networks (GANs) 5. Improved GANs 6. Disentangled Representation GANs 7. Cross-Domain GANs 8. Variational Autoencoders (VAEs) 9. Deep Reinforcement Learning 10. Policy Gradient Methods 11. Object Detection 12. Semantic Segmentation 13. Unsupervised Learning Using Mutual Information 14. Other Books You May Enjoy
15. Index

2. Implementing DCGAN in Keras

Figure 4.2.1 shows DCGAN that is used to generate fake MNIST images:

Figure 4.2.1: A DCGAN model

DCGAN implements the following design principles:

  • Use strides > 1, and a convolution instead of MaxPooling2D or UpSampling2D. With strides > 1, the CNN learns how to resize the feature maps.
  • Avoid using Dense layers. Use CNN in all layers. The Dense layer is utilized only as the first layer of the generator to accept the z-vector. The output of the Dense layer is resized and becomes the input of the succeeding CNN layers.
  • Use Batch Normalization (BN) to stabilize learning by normalizing the input to each layer to have zero mean and unit variance. There is no BN in the generator output layer and discriminator input layer. In the implementation example to be presented here, no batch normalization is used in the discriminator.
  • Rectified Linear Unit (ReLU) is used in all layers of the generator except...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image