Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Active Machine Learning with Python

You're reading from   Active Machine Learning with Python Refine and elevate data quality over quantity with active learning

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781835464946
Length 176 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Margaux Masson-Forsythe Margaux Masson-Forsythe
Author Profile Icon Margaux Masson-Forsythe
Margaux Masson-Forsythe
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Part 1: Fundamentals of Active Machine Learning
2. Chapter 1: Introducing Active Machine Learning FREE CHAPTER 3. Chapter 2: Designing Query Strategy Frameworks 4. Chapter 3: Managing the Human in the Loop 5. Part 2: Active Machine Learning in Practice
6. Chapter 4: Applying Active Learning to Computer Vision 7. Chapter 5: Leveraging Active Learning for Big Data 8. Part 3: Applying Active Machine Learning to Real-World Projects
9. Chapter 6: Evaluating and Enhancing Efficiency 10. Chapter 7: Utilizing Tools and Packages for Active ML 11. Index 12. Other Books You May Enjoy

Summary

In this introductory chapter, we covered the fundamentals of active ML and how it contrasts with passive learning approaches.

You learned what active learning is and its goal of maximizing predictive performance with fewer labeled training examples. We discussed the core components of an active learning system: the unlabeled data pool, query strategy, machine learning model, and the oracle labeler.

You now understand the difference between membership query synthesis, stream-based sampling, and pool-based sampling scenarios. We compared active and passive learning, highlighting the benefits of an interactive, iterative approach in active learning.

Importantly, you now know that active learning can produce models with equal or greater accuracy while requiring far less labeled training data. This is critical for reducing the costs of modeling, as labeling is often the most expensive component.

The skills you gained in this introduction will equip you to determine when...

You have been reading a chapter from
Active Machine Learning with Python
Published in: Mar 2024
Publisher: Packt
ISBN-13: 9781835464946
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at AU $24.99/month. Cancel anytime