Get a solid grasp of the principles behind quantum algorithms and optimization with minimal mathematical prerequisites
Learn the process of implementing the algorithms on simulators and actual quantum computers
Solve real-world problems using practical examples of methods
Description
This book provides deep coverage of modern quantum algorithms that can be used to solve real-world problems. You’ll be introduced to quantum computing using a hands-on approach with minimal prerequisites.
You’ll discover many algorithms, tools, and methods to model optimization problems with the QUBO and Ising formalisms, and you will find out how to solve optimization problems with quantum annealing, QAOA, Grover Adaptive Search (GAS), and VQE. This book also shows you how to train quantum machine learning models, such as quantum support vector machines, quantum neural networks, and quantum generative adversarial networks. The book takes a straightforward path to help you learn about quantum algorithms, illustrating them with code that’s ready to be run on quantum simulators and actual quantum computers. You’ll also learn how to utilize programming frameworks such as IBM’s Qiskit, Xanadu’s PennyLane, and D-Wave’s Leap.
Through reading this book, you will not only build a solid foundation of the fundamentals of quantum computing, but you will also become familiar with a wide variety of modern quantum algorithms. Moreover, this book will give you the programming skills that will enable you to start applying quantum methods to solve practical problems right away.
Who is this book for?
This book is for professionals from a wide variety of backgrounds, including computer scientists and programmers, engineers, physicists, chemists, and mathematicians. Basic knowledge of linear algebra and some programming skills (for instance, in Python) are assumed, although all mathematical prerequisites will be covered in the appendices.
What you will learn
Review the basics of quantum computing
Gain a solid understanding of modern quantum algorithms
Understand how to formulate optimization problems with QUBO
Solve optimization problems with quantum annealing, QAOA, GAS, and VQE
Find out how to create quantum machine learning models
Explore how quantum support vector machines and quantum neural networks work using Qiskit and PennyLane
Discover how to implement hybrid architectures using Qiskit and PennyLane and its PyTorch interface
Libro che unisce i modelli di ottimizzazione (con una buona base teorica) al Quantum Computing.
Valido.
Feefo Verified review
TinyMay 11, 2023
5
Wow, just wow, a great book providing invaluable data. For those seeking any reference to convert quantum equations into code, test classically, and then run on a quantum computer, this is the book. “A Practical Guide to Quantum Machine Learning and Quantum Optimization” (Packt, 2023) by Elias Combarro and Samuel Gozalez-Castillo more than lives up to the promise. For each chapter, the book provides the quantum theory, and then the practical application, supplemented with in-step exercises to keep up with the material. If your math skills are a little weak, don’t worry, the full set of appendices provides quick references to get up to speed. The book appears in three relevant sections, an intro to quantum circuits, deeply analyzing practical quantum algorithms, and integrating quantum computing into machine learning tools. This is a must-read for anyone with even a partial interest in quantum computing and a must-have desk reference for those actively involved in this exciting field.The first section is relatively brief, and if you are familiar with quantum computing, you can probably skipthese two chapters. However, it provides an excellent history of quantum, an introduction to using quantum circuits, and the tools provided during the book. This section relates to Appendix D, describing how to install and use the various tools required. This starts the integration between the appendices as background and the details throughout the book. The section finishes by discussing the various IDE options for writing quantum code and where that code can actually be run across quantum computers. One missing element was it does not discuss the options to use AWS Braket which I mentioned in a previous review. Section two is the meat of the book and the real brain challenge. The authors look at five different quantum algorithms (Quadratic Unconstrained Binary Operators (QUBO), Adiabatic Quantum Computing, Quantum Approximate Optimization Algorithm (QAOA), Grover Adaptive Search (GAS), and the Variational Quantum Eigensolver). If those names left you a little behind, don’t worry. Each chapter starts with the explanation and theory behind the algorithm, use-cases, and then moves into the coding approach. Each chapter takes a detailed look at either Qiskit or Pennylane, depending on which works best, and then moves to describe that one thoroughly. The other option receives a brief explanation but is sufficient to start. An important reminder for this mid-section is the concept of NP problems where N is a number, and P is polynomial time. This presents NP as the class of problems for which exists a polynomial time verifier and one of the largest open quantum problems proving that P is not equal to NP. Moving on, NP-hard problems occur if every problem in NP is poly-time reducible. NP-complete occurs where every problem is present in NP and every problem is reducible to it. These definitions occur repeatedly throughout the book. One other important consideration is how quantum can help accelerate some problems, for example, in the GAS theorem, to find data satisfying specific conditions in unsorted data, a classical computer requires a minimum of N/2 operations while quantum computing requires √N operations, a massive decrease. The third section then converts those algorithms into practical ML applications. It begins with a review of how to establish ML processes and the changes to be expected. The biggest challenge is first converting classical data into quantum-relevant terms and then measuring them at the end. After working through Vector Support Machines and neural networks, the chapter on Generative Adversarial Networks(GAN) is great. The GAN process is where one sets an initial machine to review data and produce new data similar to what it has learned. The discriminator then uses the original dataset to determine if the new data is sufficient. Multiple competing algorithms, how could you ask for anything more? The one drawback to the book is it is primarily a reference rather than a true guide. It highlights all the required material to be able to function in a quantum computing space but does not show you what you should be looking for with your particular use case. This is a strength and a shortcoming. As a reference, this is key material to make sure the solutions you implement are appropriate or to help discriminate once you have a problem. If you don’t know what you want to do with quantum computing, this may not help you get there but that definitely does not undermine the book’s value. Overall, “A Practical Guide to Quantum Machine Learning and Quantum Optimization” (Packt, 2023) by Elias Combarro and Samuel Gozalez-Castillo is one of the best I’ve read recently on this challenging field. It presents all the required detail, and if not always easy to understand, the appendices rapidly bring you up to speed. I recommend the e-version as searching to connect the terms between chapters was frequently helpful as well. Each chapter also presents a set of exercises to make sure one can follow along accurately. The code samples are convenient, and always included with outputs, and jumping between different providers helps ensure you understand the process and not just the particular implementation. I recommend to anyone with even a passing interest in quantum computing and as a key desk reference for those who deal with these issues on a daily basis. A must-read.
Amazon Verified review
AadiMay 01, 2023
5
What sets this book apart is its emphasis on practical applications. The authors provide numerous examples and code snippets to demonstrate how quantum algorithms can be used to solve real-world problems. They also discuss the current limitations of quantum computing and offer guidance on how to overcome these limitations.The writing is clear and concise, making the material accessible to both beginners and experts. The book is well-organized, with each chapter building upon the previous one, and the authors do an excellent job summarizing the key takeaways at the end of each chapter.
Amazon Verified review
GauriJul 05, 2023
5
This book offers an in-depth understanding of concepts related to ML, Quantum Computing, and Optimization. As a prior graduate student myself, I found the information related to QC frameworks and quantum gates useful as it explains the working principles of different models related to these concepts.
Elías F. Combarro holds degrees from the University of Oviedo (Spain) in both Mathematics (1997, award for second highest grades in the country) and Computer Science (2002, award for highest grades in the country). After some research stays at the Novosibirsk State University (Russia), he obtained a Ph.D. in Mathematics (Oviedo, 2001) with a dissertation on the properties of some computable predicates under the supervision of Prof. Andrey Morozov and Prof. Consuelo Martínez.
Since 2009, Elías F. Combarro has been an associate professor at the Computer Science Department of the University of Oviedo. He has published more than 50 research papers in international journals on topics such as Computability Theory, Machine Learning, Fuzzy Measures and Computational Algebra. His current research focuses on the application Quantum Computing to algebraic, optimisation and machine learning problems.
From July 2020 to January 2021, he was a Cooperation Associate at CERN openlab. Currently, he is the Spain representative in the Advisory Board of CERN Quantum Technology Initiative, a member of the Advisory Board of SheQuantum and one of the founders of the QSpain, a quantum computing think tank based in Spain.
Samuel González-Castillo holds degrees from the University of Oviedo (Spain) in both Mathematics and Physics (2021). He is currently a mathematics research student at the National University of Ireland, Maynooth, where he works as a graduate teaching assistant.
He completed his physics bachelor thesis under the supervision of Prof. Elías F. Combarro and Prof. Ignacio F. Rúa (University of Oviedo), and Dr. Sofia Vallecorsa (CERN). In it, he worked alongside other researchers from ETH Zürich on the application of Quantum Machine Learning to classification problems in High Energy Physis. In 2021, he was a summer student at CERN developing a benchmarking framework for quantum simulators. He has contributed to several conferences on quantum computing.
A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content
How can I cancel my subscription?
To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.
What are credits?
Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.
What happens if an Early Access Course is cancelled?
Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.
Where can I send feedback about an Early Access title?
If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team.
Can I download the code files for Early Access titles?
We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.
When we publish the book, the code files will also be available to download from the Packt website.
How accurate is the publication date?
The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.
How will I know when new chapters are ready?
We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.
I am a Packt subscriber, do I get Early Access?
Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.
How is Early Access delivered?
Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.
How do I buy Early Access content?
Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.
What is Early Access?
Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.