Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Unsupervised Learning Workshop

You're reading from   The Unsupervised Learning Workshop Get started with unsupervised learning algorithms and simplify your unorganized data to help make future predictions

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800200708
Length 550 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Christopher Kruger Christopher Kruger
Author Profile Icon Christopher Kruger
Christopher Kruger
Aaron Jones Aaron Jones
Author Profile Icon Aaron Jones
Aaron Jones
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Introduction to Clustering 2. Hierarchical Clustering FREE CHAPTER 3. Neighborhood Approaches and DBSCAN 4. Dimensionality Reduction Techniques and PCA 5. Autoencoders 6. t-Distributed Stochastic Neighbor Embedding 7. Topic Modeling 8. Market Basket Analysis 9. Hotspot Analysis Appendix

Introduction

In previous chapters, we evaluated a number of different approaches to data clustering, including k-means and hierarchical clustering. While k-means is the simplest form of clustering, it is still extremely powerful in the right scenarios. In situations where k-means can't capture the complexity of the dataset, hierarchical clustering proves to be a strong alternative.

One of the key challenges in unsupervised learning is that you will be presented with a collection of feature data but no complementary labels telling you what a target state will be. While you may not get a discrete view of what the target labels are, you can get some semblance of structure out of the data by clustering similar groups together and seeing what is similar within groups. The first approach we covered to achieve this goal of clustering similar data points is k-means. K-means clustering works best for simple data challenges where speed is paramount. Simply looking at the closest data...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime