Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Unsupervised Learning Workshop

You're reading from   The Unsupervised Learning Workshop Get started with unsupervised learning algorithms and simplify your unorganized data to help make future predictions

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800200708
Length 550 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Christopher Kruger Christopher Kruger
Author Profile Icon Christopher Kruger
Christopher Kruger
Aaron Jones Aaron Jones
Author Profile Icon Aaron Jones
Aaron Jones
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Introduction to Clustering 2. Hierarchical Clustering FREE CHAPTER 3. Neighborhood Approaches and DBSCAN 4. Dimensionality Reduction Techniques and PCA 5. Autoencoders 6. t-Distributed Stochastic Neighbor Embedding 7. Topic Modeling 8. Market Basket Analysis 9. Hotspot Analysis Appendix

Agglomerative versus Divisive Clustering

So far, our instances of hierarchical clustering have all been agglomerative – that is, they have been built from the bottom up. While this is typically the most common approach for this type of clustering, it is important to know that it is not the only way a hierarchy can be created. The opposite hierarchical approach, that is, built from the top up, can also be used to create your taxonomy. This approach is called divisive hierarchical clustering and works by having all the data points in your dataset in one massive cluster. Many of the internal mechanics of the divisive approach will prove to be quite similar to the agglomerative approach:

Figure 2.20: Agglomerative versus divisive hierarchical clustering

As with most problems in unsupervised learning, deciding on the best approach is often highly dependent on the problem you are faced with solving.

Imagine that you are an entrepreneur who has just bought...

You have been reading a chapter from
The Unsupervised Learning Workshop
Published in: Jul 2020
Publisher: Packt
ISBN-13: 9781800200708
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image