Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
The Kaggle Workbook

You're reading from   The Kaggle Workbook Self-learning exercises and valuable insights for Kaggle data science competitions

Arrow left icon
Product type Paperback
Published in Feb 2023
Publisher Packt
ISBN-13 9781804611210
Length 172 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Luca Massaron Luca Massaron
Author Profile Icon Luca Massaron
Luca Massaron
Konrad Banachewicz Konrad Banachewicz
Author Profile Icon Konrad Banachewicz
Konrad Banachewicz
Arrow right icon
View More author details
Toc

Ensembling the results

Now, having two models, what’s left is to mix them together and see if we can improve the results. As suggested by Jahrer we go straight for a blend of them, but we do not limit ourselves to producing just an average of the two (since our approach in the end has slightly differed from Jahrer’s one) but we will also try to get optimal weights for the blend. We start importing the out-of-fold predictions and having our evaluation function ready.

import pandas as pd
import numpy as np
from numba import jit
@jit
def eval_gini(y_true, y_pred):
    y_true = np.asarray(y_true)
    y_true = y_true[np.argsort(y_pred)]
    ntrue = 0
    gini = 0
    delta = 0
    n = len(y_true)
    for i in range(n-1, -1, -1):
        y_i = y_true[i]
        ntrue += y_i
        gini += y_i * delta
        delta += 1 - y_i
    gini = 1 - 2 * gini / (ntrue * (n - ntrue))
    return gini
lgb_oof = pd.read_csv("../input/workbook-lgb/lgb_oof.csv")
dnn_oof = pd.read_csv...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime