Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow Reinforcement Learning Quick Start Guide

You're reading from   TensorFlow Reinforcement Learning Quick Start Guide Get up and running with training and deploying intelligent, self-learning agents using Python

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789533583
Length 184 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Kaushik Balakrishnan Kaushik Balakrishnan
Author Profile Icon Kaushik Balakrishnan
Kaushik Balakrishnan
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Up and Running with Reinforcement Learning 2. Temporal Difference, SARSA, and Q-Learning FREE CHAPTER 3. Deep Q-Network 4. Double DQN, Dueling Architectures, and Rainbow 5. Deep Deterministic Policy Gradient 6. Asynchronous Methods - A3C and A2C 7. Trust Region Policy Optimization and Proximal Policy Optimization 8. Deep RL Applied to Autonomous Driving 9. Assessment 10. Other Books You May Enjoy

Summary

In this chapter, we looked at the concept of TD. We also learned about our first two RL algorithms: Q-learning and SARSA. We saw how you can code these two algorithms in Python and use them to solve the cliff walking and grid world problems. These two algorithms give us a good understanding of the basics of RL and how to transition from theory to code. These two algorithms were very popular in the 1990s and early 2000s, before deep RL gained prominence. Despite that, Q-learning and SARSA still find use in the RL community today.

In the next chapter, we will look at the use of deep neural networks in RL that gives rise to deep RL. We will see a variant of Q-learning called Deep Q-Networks (DQNs) that will use a neural network instead of a tabular state-action value function, which we saw in this chapter. Note that only problems with small number of states and actions are...

You have been reading a chapter from
TensorFlow Reinforcement Learning Quick Start Guide
Published in: Mar 2019
Publisher: Packt
ISBN-13: 9781789533583
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image