Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Scala Data Analysis Cookbook (new)

You're reading from   Scala Data Analysis Cookbook (new) Navigate the world of data analysis, visualization, and machine learning with over 100 hands-on Scala recipes

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781784396749
Length 254 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Arun Manivannan Arun Manivannan
Author Profile Icon Arun Manivannan
Arun Manivannan
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Getting Started with Breeze FREE CHAPTER 2. Getting Started with Apache Spark DataFrames 3. Loading and Preparing Data – DataFrame 4. Data Visualization 5. Learning from Data 6. Scaling Up 7. Going Further Index

Introduction

Apache Spark is a cluster computing platform that claims to run about 10 times faster than Hadoop. In general terms, we could consider it as a means to run our complex logic over massive amounts of data at a blazingly fast speed. The other good thing about Spark is that the programs that we write are much smaller than the typical MapReduce classes that we write for Hadoop. So, not only do our programs run faster but it also takes less time to write them.

Spark has four major higher level tools built on top of the Spark Core: Spark Streaming, Spark MLlib (machine learning), Spark SQL (an SQL interface for accessing the data), and GraphX (for graph processing). The Spark Core is the heart of Spark. Spark provides higher level abstractions in Scala, Java, and Python for data representation, serialization, scheduling, metrics, and so on.

At the risk of stating the obvious, a DataFrame is one of the primary data structures used in data analysis. They are just like an RDBMS table...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image