In this recipe, we will explore some interesting plots that are for presenting and analyzing the results from mixed effects models. In the simplest formulation of mixed effects models, we have a random intercept by group. Every observation belonging to the same group will share that very same shock, rendering all of them correlated. But this can be extended to other coefficients (not just the intercept). We could have yet another coefficient, that is, beta would be the sum of beta1 (which would be fixed) and beta_random (this would be a random effect). What this would imply is that the slope relating to the regressor and the response, would have two parts: a part that is the same for all the observations, and another part that depends on each group.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine