Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Hardware Pentesting

You're reading from   Practical Hardware Pentesting A guide to attacking embedded systems and protecting them against the most common hardware attacks

Arrow left icon
Product type Paperback
Published in Apr 2021
Publisher Packt
ISBN-13 9781789619133
Length 382 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Jean-Georges Valle Jean-Georges Valle
Author Profile Icon Jean-Georges Valle
Jean-Georges Valle
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1: Getting to Know the Hardware
2. Chapter 1: Setting Up Your Pentesting Lab and Ensuring Lab Safety FREE CHAPTER 3. Chapter 2: Understanding Your Target 4. Chapter 3: Identifying the Components of Your Target 5. Chapter 4: Approaching and Planning the Test 6. Section 2: Attacking the Hardware
7. Chapter 5: Our Main Attack Platform 8. Chapter 6: Sniffing and Attacking the Most Common Protocols 9. Chapter 7: Extracting and Manipulating Onboard Storage 10. Chapter 8: Attacking Wi-Fi, Bluetooth, and BLE 11. Chapter 9: Software-Defined Radio Attacks 12. Section 3: Attacking the Software
13. Chapter 10: Accessing the Debug Interfaces 14. Chapter 11: Static Reverse Engineering and Analysis 15. Chapter 12: Dynamic Reverse Engineering 16. Chapter 13: Scoring and Reporting Your Vulnerabilities 17. Chapter 14: Wrapping It Up – Mitigations and Good Practices 18. Assessments 19. Other Books You May Enjoy

Chapter 9

  1. Encryption: The goal of encryption is to make it impossible to read for someone who does not have the keys necessary to read the signal. The goal of encoding is to make it easy or possible to transmit and receive but it does secure the information.
  2. The fast Fourier transform is used to transform a signal in a time domain (what did I receive and when?) to the frequency domain (what kind of frequencies is my signal made out of?).
  3. The modulation scheme indicates what change(s) in physical dimension(s) (change in frequency, amplitude, phase, or a combination) of the signal is used to encode the information.
  4. Sampling frequency and available frequency range.
  5. Imagine a signal as a sinusoidal of wavelength x. If our dipole antenna is measuring x, the difference between one end and the other is 0! Our receiver would have nothing to measure!
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime