Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Data Analysis Cookbook

You're reading from   Practical Data Analysis Cookbook Over 60 practical recipes on data exploration and analysis

Arrow left icon
Product type Paperback
Published in Apr 2016
Publisher
ISBN-13 9781783551668
Length 384 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Tomasz Drabas Tomasz Drabas
Author Profile Icon Tomasz Drabas
Tomasz Drabas
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Preparing the Data FREE CHAPTER 2. Exploring the Data 3. Classification Techniques 4. Clustering Techniques 5. Reducing Dimensions 6. Regression Methods 7. Time Series Techniques 8. Graphs 9. Natural Language Processing 10. Discrete Choice Models 11. Simulations Index

Testing and comparing the models


Building statistical models without understanding their effectiveness is a pointless exercise as it gives no indication of whether your model works or not. It also makes it impossible to compare between models in order to choose which one performs better.

In this recipe, we will see how to understand whether your models work well.

Getting ready

To execute this recipe, all you need is pandas and scikit-learn. No other prerequisites are necessary.

How to do it…

pandas makes it extremely easy to calculate a suite of test statistics of the performance of your model. We will be using the following code to assess the power of our models (the helper.py file at the root of the Codes folder):

import sklearn.metrics as mt

def printModelSummary(actual, predicted):
    '''
        Method to print out model summaries
    '''
    print('Overall accuracy of the model is {0:.2f} percent'\
        .format(
            (actual == predicted).sum() / \
            len(actual) *...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image