Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
NumPy Cookbook

You're reading from   NumPy Cookbook If you're a Python developer with basic NumPy skills, the 70+ recipes in this brilliant cookbook will boost your skills in no time. Learn to raise productivity levels and code faster and cleaner with the open source mathematical library.

Arrow left icon
Product type Paperback
Published in Oct 2012
Publisher Packt
ISBN-13 9781849518925
Length 226 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (17) Chapters Close

NumPy Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Winding Along with IPython FREE CHAPTER 2. Advanced Indexing and Array Concepts 3. Get to Grips with Commonly Used Functions 4. Connecting NumPy with the Rest of the World 5. Audio and Image Processing 6. Special Arrays and Universal Functions 7. Profiling and Debugging 8. Quality Assurance 9. Speed Up Code with Cython 10. Fun with Scikits Index

Fancy indexing


In this tutorial, we will apply fancy indexing to set the diagonal values of the Lena image to 0. This will draw black lines along the diagonals, crossing it through, not because there is something wrong with the image, but just as an exercise. Fancy indexing is indexing that does not involve integers or slices, which is normal indexing.

How to do it...

We will start with the first diagonal:

  1. Set the values of the first diagonal to 0.

    To set the diagonal values to 0, we need to define two different ranges for the x and y values:

    lena[range(xmax), range(ymax)] = 0
  2. Set the values of the other diagonal to 0.

    To set the values of the other diagonal, we require a different set of ranges, but the principles stay the same:

    lena[range(xmax-1,-1,-1), range(ymax)] = 0

At the end, we get this image with the diagonals crossed off, as shown in the following screenshot:

The following is the complete code for this recipe:

import scipy.misc
import matplotlib.pyplot

# This script demonstrates fancy...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime