Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Java Machine Learning

You're reading from   Mastering Java Machine Learning A Java developer's guide to implementing machine learning and big data architectures

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785880513
Length 556 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Uday Kamath Uday Kamath
Author Profile Icon Uday Kamath
Uday Kamath
Krishna Choppella Krishna Choppella
Author Profile Icon Krishna Choppella
Krishna Choppella
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Machine Learning Review FREE CHAPTER 2. Practical Approach to Real-World Supervised Learning 3. Unsupervised Machine Learning Techniques 4. Semi-Supervised and Active Learning 5. Real-Time Stream Machine Learning 6. Probabilistic Graph Modeling 7. Deep Learning 8. Text Mining and Natural Language Processing 9. Big Data Machine Learning – The Final Frontier A. Linear Algebra B. Probability Index

Data transformation and preprocessing


In this section, we will cover the broad topic of data transformation. The main idea of data transformation is to take the input data and transform it in careful ways so as to clean it, extract the most relevant information from it, and to turn it into a usable form for further analysis and learning. During these transformations, we must only use methods that are designed while keeping in mind not to add any bias or artifacts that would affect the integrity of the data.

Feature construction

In the case of some datasets, we need to create more features from features we are already given. Typically, some form of aggregation is done using common aggregators such as average, sum, minimum, or maximum to create additional features. In financial fraud detection, for example, Card Fraud datasets usually contain transactional behaviors of accounts over various time periods during which the accounts were active. Performing behavioral synthesis such as by capturing...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime